МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ»

Факультет математики и информационных технологий

УТВЕРЖДЕНО:

на заседании Ученого совета факультета математики и информационных технологий, протокол № 6 от 18 февраля 2021 г.

Председатель совета

И.А. Моисеенко

ПРОГРАММА

профильного экзамена для абитуриентов, поступающих на обучение по образовательной программе

МАГИСТРАТУРЫ

на направление подготовки:

01.04.02 Прикладная математика и информатика (Магистерская программа: Статистика)

Содержание программы

- 1. Введение
- 2. Объем требований, для поступающих на направления подготовки 01.04.02 Прикладная математика и информатика (Магистерская программа: Статистика)
- 3. Порядок проведения и критерии оценивания
- 4. Образец билета вступительного испытания
- 5. Список рекомендованной литературы

1. Введение

Главной целью профильного экзамена по специальности является определение теоретической и практической готовности выпускника-бакалавра/специалиста к продолжению обучения в магистратуре по направлению 01.04.02 Прикладная математика и информатика (Магистерская программа: Статистика).

К профильным экзаменам по специальности допускаются лица, имеющие диплом бакалавра или специалиста.

Программа содержит понятия, теоремы, факты, которые должен знать абитуриент для выполнения практических заданий, список литературы.

2. Объем требований, для поступающих на направления подготовки 01.04.02 Прикладная математика и информатика (Магистерская программа: Статистика)

ДИСКРЕТНАЯ МАТЕМАТИКА

- 1. Множества. Способы задания множеств.
- 2. Операции над множествами. Свойства операций над множествами.
- 3. Мошность множеств.
- 4. Отношения. Свойства отношений.
- 5. Булевы функции. Критерий полноты системы булевых функций.
- 6. Размещения. Количество размещений с повторениями и без повторений.
- 7. Перестановки. Количество перестановок с повторениями и без повторений.
- 8. Сочетания. Количество сочетаний с повторениями и без повторений.
- 9. Формула включений-исключений.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

- 1. Определение вероятности события (статистические, классическое, аксиоматическое).
- 2. Формула полной вероятности, формулы Байеса.
- 3. Теоремы Муавра-Лапласа.
- 4. Случайная величина, функция распределения, независимость.
- 5. Дискретные распределения: биномиальное, пуассоновское, геометрическое, отрицательное биномиальное.
- 6. Непрерывные распределения: нормальное, Коши, показательное, равномерное.
- 7. Числовые характеристики случайных величин.
- 8. Центральная предельная теорема.
- 9. Функция распределения случайной величины и ее свойства.
- 10. Математическое ожидание, дисперсия случайной величины и их свойства.
- 11. Закон больших чисел. Неравенство Чебышева. Теорема Чебышева.
- 12. Закон больших чисел. Теоремы Маркова и Бернулли.

- 13. Теорема сложения вероятностей.
- 14. Условная вероятность. Теорема умножения вероятностей.

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

- 1. Понятие генеральной совокупности и выборки. Дискретный статистический ряд распределений выборки и его характеристики.
- 2. Числовые характеристики статистического распределения выборки. Интервальное статистическое распределение выборки и его числовые характеристики.
- 3. Распределение χ^2 . Свойства χ^2 распределения.
- 4. Распределение Стьюдента. Распределение Фишера-Снедекора.
- 5. Оценка статистических гипотез. Лемма Неймана-Пирсона.
- 6. Оценивание параметров в распределениях. Метод моментов.
- 7. Оценивание параметров в распределениях. Метод максимального правдоподобия.
- 8. Свойства оценок. Неравенство Крамера-Рао.
- 9. Доверительный интервал для оценки среднего нормального распределения, если дисперсия известна.
- 10. Доверительный интервал для оценки среднего нормального распределения, если дисперсия неизвестна.

ТЕОРИЯ СЛУЧАЙНЫХ ПРОЦЕССОВ

- 1. Случайный процесс. Характеристики случайного процесса. Классификация случайных процессов.
- 2. Взаимная корреляционная функция случайных процессов, ее свойства.
- 3. Стационарные процессы. Стационарность в узком и широком смысле.
- 4. Пуассоновский процесс. Свойства пуассоновского процесса.
- 5. Винеровский процесс. Свойства винеровского процесса.
- 6. Спектральная плотность стационарного случайного процесса.
- 7. Цепи Маркова.
- 8. Корреляционные функции производной и интеграла от стационарного случайного процесса.
- 9. Интегрирование случайных функций. Теорема об интегрируемости случайного процесса.
- 10. Эргодическая теорема для цепей Маркова.
- 11. Процесс броуновского движения. Распределение величины максимального смещения броуновской частицы за фиксированное время.

3. Порядок проведения и критерии оценивания

Профильный экзамен по специальности проводятся в один этап в форме письменного экзамена.

Экзаменационные задачи должны быть выполнены в течение 180 минут.

Ответ абитуриента рассматривается экзаменационной комиссией и оценивается на закрытом заседании по 100-бальной шкале.

Максимальное количество баллов, полученных за решение задач, составляет

100 баллов (задачи с 1 по 10 оцениваются по 5 баллов, задачи 11 и 12 — по 15 баллов, задача 13 — 20 баллов).

Тестовые задачи оцениваются максимальным количеством баллов, если приведен правильный ответ и оцениваются в «0» баллов в противном случае.

Задача оценивается максимальным количеством баллов, если ее решение удовлетворяет каждому из следующих условий:

- 1) ход решения правильный, все этапы решения последовательны;
- 2) решение содержит все необходимые обоснования, пояснения, ссылки на используемые утверждения;
- 3) в решении правильно и точно выполнены все арифметические и алгебраические действия и упрощения;
- 4) решение задачи завершается словом «ответ», после которого приведен правильный и полный ответ, который полностью соответствует поставленному в задаче вопросу.

Задача оценивается 50 % от максимального количества баллов, если:

- 1. в решении правильно и точно выполнены все арифметические и алгебраические действия и упрощения;
- 2. решение содержит не все необходимые обоснования, пояснения, ссылки на используемые утверждения.

Задача оценивается в «0» баллов, если его решение отсутствует или это решение удовлетворяет по крайней мере одному из следующих условий:

- 1) решена задача с другим условием;
- 2) приведён ответ, но отсутствует решение;
- 3) решение не содержит продвижений в направлении получения правильного ответа;
- 4) решение задачи основано не неверных предположениях;
- 5) на начальном этапе решения допущена ошибка, которая обусловила изменение степени сложности или хода правильного решения исходной задачи;
- 6) в приведенном решении содержится значительное количество ошибок;
- 7) решение разбросано в разных местах экзаменационной работы без соответствующих сопроводительных комментариев абитуриента.

Шкала перевода полученных абитуриентами баллов в пятибалльную систему

100-бальная	Пятибалльная шкала
0-59	«2» (неудовлетворительно)
60-74	«3» (удовлетворительно)
75-89	«4» (хорошо)
90-100	«5» (отлично)

Все ответы должны вноситься в лист ответов (письменной работы) путем вписывания необходимого ответа. Он заполняется ручкой синего цвета. Обязательно фиксируется номер варианта на листе письменной работы. Никакие лишние пометки на листе письменной работы не допускаются.

4. Образец билета вступительного испытания

В билет входят: десять закрытых тестовых задач (среди ответов - только один правильный) и три задачи с полным обоснованием решения.

Для каждого задания необходимо привести полное развернутое решение, оканчивающееся ответом. Решения заданий могут быть записаны в любом порядке с сохранением нумерации согласно билету. Никакие лишние пометки, дешифрующие работу, на листах ответов не допускаются.

УТВЕРЖДЕНО

на заседании Ученого совета факультета математики и информационных технологий протокол № 6 от «18» февраля 2021 г. Председатель Ученого совета _____ И.А. Моисеенко

ГОУ ВПО «Донецкий национальный университет» факультет математики и информационных технологий

Профильный экзамен по математике

ОП Магистратура

Форма обучения очная

Направление подготовки/ специальность <u>01.04.02 Прикладная математика и</u> информатика (*Магистерская программа*: *Статистика*)

БИЛЕТ № 1

В заданиях 1-10 один верный ответ

- 1. Какое из приведенных ниже утверждений верное, если A и B два некоторых несовместимых события и $P(A)\neq 0, P(B)\neq 0$?
 - a) $P(A \cup B) = P(A) + P(B)$
 - б) $P(A \cap B) = P(A) + P(B)$
 - $B) P(A \cap B) = P(A)P(B)$
 - Γ) $P(A \mid B) = P(A) P(B)$
- 2. Случайные величины ξ и η независимые и имеют закон распределения

- 2	0	2
1/3	1/3	1/3

каждая.

Тогда $P\{\xi + \eta = 0\}$ равно:

- a) 1/9
- 6) 2/9
- в) 1/3
- Γ) 2/3
- 3. Если случайная величина ξ имеет нормальное распределение с параметрами 0 и 1, то случайная величина $\eta = \xi^2$ имеет:
 - а) нормальное распределение с параметрами 0 и 2;
 - б) нормальное распределение с параметрами 0 и 1;
 - в) x^2 распределение с одной ступенью воли;
 - Γ) x^2 распределение с двумя степенями воли.
- 4. Если сумма независимых одинаково распределенных случайных величин имеет такой же тип распределения, как и слагаемые, то он не может быть:
 - а) нормальным
 - б) пуассоновским
 - в) биномиальным
 - г) экспоненциальным
- 5. Какое из перечисленных ниже решений является ошибкой І-го рода?
 - а) принять гипотезу в то время, если она ошибочна;
 - б) отклонить гипотезу в то время, если она справедлива;
 - в) принять гипотезу в то время, если она справедлива;
 - г) отклонить гипотезу в то время, если она ошибочна.
- 6. Какое из перечисленных ниже утверждений верное для любых событий A и E?
 - a) $P(A \cup B) < P(B)$
 - б) $P(A \cup B) > P(A)$
 - $\mathrm{B})\,P\,(A\cup B)>\,P(A)+P(B)$
 - Γ) $P(A \cup B) \ge P(A)$
- 7. Случайные величины ξ , η и ζ имеют нормальное распределение (0;), (0;2), (0;3) соответственно. Какое из приведенных утверждений верное?
 - a) M ξ < M η < M ζ
 - σ) M ξ = M η = M ζ
 - в) M $\xi > M \eta > M \zeta$
 - г) невозможно сравнить $M \, \xi$, $M \, \eta$, $M \, \zeta$
- 8. Среди приведенных распределений указать тот, который неустойчивый:
 - а) равномерный;
 - б) x^2 распределение;
 - в) нормальное;
 - г) пуассоновское;
- 9. Пусть ξ_1 , ξ_2 ,... ξ_n выборка из распределения с функцией распределения F(x) $F_n(x)$ соответственная эмпирическая функция распределения. Какое утверждение неправильное?
- а) $F_n(x)$ является состоятельной оценкой функции распределения F(x);

- б) $F_n(x)$ является несмещенной оценкой функции распределения F(x);
- в) $F_n(x)$ сходится по вероятности к F(x);
- Γ) $F_n(x)$ непрерывная справа.
- 10. Оценка $\hat{\theta}$ неизвестного параметра θ является несмещенной, если
- а) математическое ожидание оценки стремится по вероятности к параметру;
- б) дисперсия оценки равна параметру;
- в) математическое ожидание оценки равно параметру;
- г) дисперсия оценки минимальна.

В заданиях 11–13 приведите подробное решение.

- 11. В двух урнах находится по 10 шаров, из которых 5 и 6 шаров белых соответственно. Из первой урны перекладывают во вторую наугад взятые три шара. Обозначим ξ случайную величину, равную количеству белых шаров, оставшихся в первой урне после перекладывания. Найти распределение ξ , ее математическое ожидание и дисперсию.
- 12. Плотность распределения случайной величины ξ имеет вид: $f_{\xi}(x) = \lambda e^{-\lambda x}$ Найти плотность распределения случайной величины: $\eta = e^{\xi}$.
- 13. Пусть $(\xi_1, \xi_1, \dots \xi_n)$ выборка значений случайной величины ξ , что имеет плотность $f(x) = \frac{x}{\theta^2} \exp\left\{-\frac{x}{\theta}\right\}$, x > 0, $\theta > 0$. Найти оценку неизвестного параметра θ . Исследовать ее на несмещенность, состоятельность и эффективность.

Председатель приемной комиссии	 С.В. Беспалова
Председатель экзаменационной	
комиссии	 А.П. Гатун

Год поступления 2021

5. Список рекомендованной литературы

- 1. Горелова Г. В. Теория вероятностей и математическая статистика в примерах и задачах с применением Excel: Учеб. пособие для вузов по экон. специальностям / Г. В. Горелова, И. А. Кацко. 3-е изд. Ростов-на-Дону: Феникс, 2005. 475,[1] с. –(7: Места выдачи: АУЛ (2), АНЛ (3), Чз1 (1), Чз3 (1)).
- 2. Гихман И. И. Введение в теорию случайных процессов : учеб. пособие для студентов физ.-мат. специальностей вузов / И. И. Гихман, А. В. Скороход. 2-е изд. Москва : Наука, 1977. 568 с. Места выдачи: АУЛ (11), АНЛ (1), Чз1 (1), Выс (11).
- 3. Розанов, Ю. А. Введение в теорию случайных процессов : [Учеб. пособие для физ.-мат. специальностей вузов] / Ю. А. Розанов. М. : Наука, 1982. 128 с. Места выдачи: АУЛ (12), АНЛ (1), Чз1 (1), Выс (12).
- 4. Гихман И. И. Введение в теорию случайных процессов / И. И. Гихман, А. В. Скороход. Москва: Наука, 1965. 655 с. Места выдачи: АНЛ (2), Чз1 (2), Выс (2).
- 5. Бандура В. Н. Теория вероятностей и математическая статистика: Учеб. пособие для экономистов и статистиков / Бандура В. Н., Породников В. Д.; Донецкий гос. ун-т. Донецк: ДонГУ, 1997. 107 с. Места выдачи: АУЛ (13), АНЛ (1), Чз1 (1), Выс (13).
- 6. Гмурман В. Е. Теория вероятностей и математическая статистика : Учеб. пособие для студентов вузов / В.Е. Гмурман. 7-е изд. М. : Высш. шк., 2000. 479 с.
 - Места выдачи: АУЛ (22), АНЛ (1), Чз1 (1), Выс (22).
- 7. Турчин В. Н. Теория вероятностей и математическая статистика : учеб. для студентов вузов / В. Н. Турчин. Днепропетровск : ДНУ, 2008. 656 с. Места выдачи: АУЛ (2), Чз3 (1), Выс (2).
- 8. Турчин В. Н. Теория вероятностей и математическая статистика : Основные понятия, примеры, задачи / В. Н. Турчин. Днепропетровск : ИМА-пресс, 2012. 575 с.
 - Места выдачи: Чз3 (1).
- 9. Семенов В. А. Теория вероятностей и математическая статистика: учебное пособие для бакалавров и специалистов, по направлению 010500 "Математическое обеспечение и администрирование информационных систем" / В. А. Семенов. Москва [и др.]: Питер, 2013. 192 с. Места выдачи: АНЛ (1), Чз1 (1), Выс (1).
- 10. Дискретная математика: учебное пособие / [А. И. Дзундза, И. А. Моисеенко, К. Б. Селяков и др.]; ГОУ ВПО "Донецкий национальный университет", Кафедра теории вероятностей и математической статистики. Донецк: ГОУ ВПО "ДонНУ", 2017. 230 с.
 - Издание на другом носителе : <u>Дискретная математика [Электронный ресурс]</u> : учебное пособие / [А. И. Дзундза, И. А. Моисеенко, К. Б. Селяков и др.] ; ГОУ ВПО "Донецкий национальный университет", Кафедра теории

<u>вероятностей и математической статистики. - Донецк : ГОУ ВПО "ДонНУ", 2017. - Электронные данные (1 файл).</u>

Места выдачи: Чз3 (1), кафедра теории вероятностей и математической статистики (20).

- 11. Новиков Ф. А. Дискретная математика для магистров и бакалавров : учебник для студентов вузов, обучающихся по направлению подготовки "Системный анализ и управление" / Ф. А. Новиков. Санкт-Петербург [и др.] : Питер, 2011. 383 с. Места выдачи: Чз3 (1).
- 12. Ильинская И. П. Дискретная математика. Сборник задач; Комбинаторика, графы, вероятность: сб. задач / И. П. Ильинская, А. И. Ильинский; Харьковский нац. ун-т им. В. Н. Каразина. Харьков: ХНУ им. В. Н. Каразина, 2008. 103 с. Места выдачи: Чз3 (1).
- 13.Вентцель, Е. С. Задачи и упражнения по теории вероятностей: Учеб. пособие для студентов втузов / Е. С. Вентцель, Л. А. Овчаров. 3-е изд. М.: Высш. шк., 2000. 366 с. Места выдачи: АУЛ (1), АНЛ (1), Чз1 (1), Выс (1).

Информационные ресурсы

- 1. www.newlibrary.ru новая электронная библиотека;
- 2. www.edu.ru федеральный портал российского образования; www.mathnet.ru общероссийский математический портал;
 - 3. www.elibrary.ru научная электронная библиотека;
 - 4. www.nehudlit.ru электронная библиотека учебных материалов.

Разработчик:

Доцент кафедры ТВиМС

Шурко И.Л.