Решения заданий конкурса «Золотой сундучок 2021» для учащихся 9 класса

Ответы к заданиям с выбором ответа

1	2	3	4	5	6	7	8	9	10
В	Б	Γ	Б	A	A	Б	В	Б	Б

1. Цена на товар сначала выросла на x%, а затем упала на x%. Найдите минимальное положительное целочисленное значение x, при котором в итоге цена на товар упала более чем в два раза.

A. 73%.

Б. 72%.

B. 71%.

Γ. 70%.

Решение. Обозначим через a первоначальную цену товара. После её повышения на x% она составила $a\bigg(1+\frac{x}{100}\bigg)$, а после снижения полученной цены на x% она стала равняться $a\bigg(1+\frac{x}{100}\bigg)\bigg(1-\frac{x}{100}\bigg)$. Требуется найти минимальное положительное целочисленное значение x, при котором выполняется неравенство $a\bigg(1+\frac{x}{100}\bigg)\bigg(1-\frac{x}{100}\bigg)<\frac{a}{2}$. Решая это неравенство, получим $x^2>5000$, $x\ge71$. Следовательно, искомое значение x равно 71%.

Ответ. В. 71%.

2. В коробке несколько красных шариков, а остальные — белые. Если из коробки вынуть один красный шарик, то количество красных шариков в ней составит $\frac{1}{7}$ количества оставшихся в коробке шариков. Когда из коробки вынули несколько белых шариков , то количество белых шариков в ней составило $\frac{1}{5}$ количества оставшихся в коробке шариков. Какое наименьшее количество шариков могло быть в коробке?

A. 15.

Б. 22.

B. 36.

Γ. 43.

Решение. Обозначим количество шариков в коробке через a, количество красных шариков — через k, тогда число белых шариков будет равняться a - k.

Если из коробки вынуть один красный шарик, то по условию будет иметь равенство $k-1=\frac{1}{7}(a-1)$ или 7k-a=6.

Пусть теперь из коробки вынули b белых шариков, тогда имеет место равенство $a-k-b=\frac{1}{5}(a-b)$ или 4(a-b)=5k. Поскольку b— натуральное число и 5 не делится на 4, то k делится на 4, то есть k=4c, где c — натуральное число. При k=4 значение a=22. При k>4 из равенства 7k-a=6 получим значения a, большие 22. Следовательно, наименьшее количество шариков, которое могло быть в коробке, равно 22.

Ответ. Б. 22.

3. Клумба имеет форму прямоугольника с периметром 14 метров. На сколько сантиметров нужно увеличить длину каждой стороны клумбы, чтобы площадь этой клумбы увеличилась на 18 м²?

A. Ha 80 cm. **B.** Ha 120 cm. **Γ.** Ha 200 cm.

Решение. Обозначим через a м и b м стороны прямоугольной клумбы. Тогда имеем равенство 2(a+b)=14 или a+b=7. Пусть длину каждой стороны клумбы нужно увеличить на x м, чтобы площадь ab этой клумбы увеличилась на 18 м 2 . Имеем уравнение

$$(a+x)(b+x) = ab+18$$
, или $x^2+(a+b)x-18=0$, или $x^2+7x-18=0$.

Корни этого квадратного уравнения равны —9 и 2. Условию удовлетворяет только корень 2. Следовательно, длину каждой стороны клумбы нужно увеличить на 2 м или на 200 см.

Ответ. Г. На 200 см.

4. Для ремонта водопроводной сети две водопроводные трубы диаметров 3 дм и 4 дм хотят заменить одной трубой с той же пропускной способностью. Ка-

ким должен быть её диаметр, если пропускная способность трубы зависит от площади ее поперечного сечения?

А. 45 см. **Б.** 50 см. **В.** 55 см. **Г.** Ответ отличен от приведенных

Решение. Пропускная способность трубы зависит от площади ее поперечного сечения. Площади кругов с диаметрами 3 дм и 4 дм можно найти по формуле

$$S_{
m kpyra} = \pi r^2 = \pi \left(\frac{d}{2}\right)^2 = \frac{\pi d^2}{4}$$
. Они соответственно равны $\frac{\pi 3^2}{4} = \frac{9}{4}\pi$ см² и

 $\frac{\pi 4^2}{4} = 4\pi$ см². Тогда площадь круга, диаметр которого нужно найти, равна

сумме найденных площадей, то есть
$$\frac{9}{4}\pi + 4\pi = \frac{\pi 3^2}{4} = \frac{25}{4}\pi$$
 см².

Зная площадь круга, из формулы для вычисления площади круга можно найти

его диаметр:
$$S=\frac{\pi d^2}{4},\,d^2=\frac{4S}{\pi}$$
. Имеем: $d^2=\frac{4\frac{25\pi}{4}}{\pi}=25\,$ см². Тогда $d=5\,$ дм.

Следовательно, две водопроводные трубы диаметров 3 дм и 4 дм можно заменить одной трубой с диаметром 5 дм. или 50 см.

Ответ. Б. 50 см.

5. Несколькими подъёмными кранами одинаковой мощности выгрузили груз из 140 вагонов. Если бы таких кранов было на 4 больше, то каждым краном пришлось бы выгружать на 4 вагона меньше. Сколько было подъёмных кранов, если производительности подъёмных кранов одинаковы?

Решение. Пусть на выгрузке вагонов работало x подъёмных кранов. Тогда каждым краном выгружали $\frac{140}{x}$ вагонов. Если бы таких кранов было x+4, то каждым краном выгружали бы $\frac{140}{x+4}$ вагонов. По условию имеем уравнение $\frac{140}{x} = \frac{140}{x+4} + 4$, или 140x + 560 = 140x + 4x(x+4), или $x^2 + 4x - 140 = 0$. Корни

этого квадратного уравнения равны -14 и 10. Условию удовлетворяет только x = 10. Следовательно, искомое количество подъёмных кранов равно 10.

Ответ. А. 10.

- **6.** Боря старше Димы, сумма возрастов Сережи и Антона меньше суммы возрастов Бори и Димы, а сумма возрастов Сережи и Димы равна сумме возрастов Бори и Антона. Кто старше всех?
 - А. Боря А. Сережа. Б. Антон. В. Сережа. Г. Определить невозможно...

Решение. Будем обозначать возрасты ребят первыми буквами их имён. Тогда условие можно будет записать с помощью таких соотношений:

$$F > \mathcal{I}$$
; $F + \mathcal{I} > C + A$; $F + A = C + \mathcal{I}$.

Из 2-го и 3го соотношений следует, что Д > A. Так как Б > Д, Д > A, то Б > A. Предположим, что Б < C. Тогда из 3-го соотношения будет вытекать, что A > D, что противоречит полученному неравенству D > A. Это противоречие и доказывает, что D > C. Следовательно, самый старший Боря.

Ответ. А. Боря.

- **7.** Код сейфа составили из 6-и двоек и троек. Известно, что в коде двоек больше чем троек, а при делении кода на 12 остаток равен 5.. Чему равна сумма цифр кода?
 - **A.** 13. **B.** 14. **B.** 15. Γ. 16.

Решение. Из условия следует, что при делении кода на 4 остаток равен 1. При делении кода на 4 остаток равен остатку при делении на 4 числа образованными двумя последними цифрами. Из чисел 22, 23, 32, 33 только последнее при делении на 4 имеет остаток равный 1. Следовательно искомый код имеет вид *авсд*33.

Так как в коде двоек больше чем троек, то код имеет вид 222233. Следовательно сумма цифр кода равна 14.

Ответ. Б. 14.

8. Фирма закупила товар, который пользовался повышенным спросом, и сумела продать треть закупленной партии по цене в 1,5 раза превышающий ту

цену, по которой получается 20% прибыли с единицы товара. Еще треть партии она продала по цене, дающей 20% прибыли с единицы товара. Оставшуюся треть товара фирма распродала по цене в два раза ниже той цены, которая дает 20% прибыли с единицы товара. Каков процент прибыли получился в результате продажи всей партии товара?

A. 40%. **B.** 20%. **Γ.** 10%.

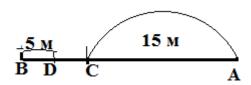
Решение. Пусть x — количество единиц купленного товара; y зедов — цена, по которой покупалась единица товара (зед — условная денежная единица); z зедов — цена для продажи единицы купленного товара, которая обеспечивает 20% прибыли с единицы товара. Тогда xz — выручка, обеспечивающая 20% прибыли. По цене $1,5 \cdot z$ зедов продали $\frac{1}{3}x$ единиц купленного товара, при этом получили $\frac{1}{3}x \cdot 1,5$ z=0,5 xz зедов. От продажи второй трети купленного товара фирма выручила $\frac{1}{3}x \cdot z$ зедов, а от продажи последней трети — $\frac{1}{3}x \cdot z$ зедов. Всего от продажи купленного товара фирма выручила z=0,50,5 z=0,51,5 зедов. Этот результат показывает, что полученная выручка обеспечивает 20% прибыли от продажи всей партии товара.

Ответ. В. 20%.

9. Два пловца стартовали одновременно с противоположных бортиков бассейна. Они поравнялись в 15 метрах от одного из бортиков. Достигнув противоположного бортика, каждый из пловцов развернулся и поплыл обратно. В следующий раз они встретились в 5 метрах от другого бортика. Какова длина дорожки в бассейне?

A. 50 m. **B.** 40 m. **B.** 35. Γ. 20 m.

Решение. Пусть длина дорожки в бассейне составляет x м, скорости пловцов из бортиков A и B соответственно равны v м/мин и w м/мин (см. рис). Так как до точки C первой встречи они



плыли одно и то же время, то имеем уравнение: $\frac{x-15}{w} = \frac{15}{v}$. Отсюда

 $x=\frac{15(v+w)}{v}$. Пловцы за одно и то же время преодолели расстояние от пункта C первой встречи до пункта D второй встречи, то есть CB+BD и CA+AD. Поэтому $\frac{x-10}{v}=\frac{x+10}{w}$. Отсюда $x=\frac{10(v+w)}{w-v}$. Приравняв полученные выражения для x, будем иметь: $\frac{15(v+w)}{v}=\frac{10(v+w)}{w-v}$. или w=5v. Тогда x=40. Следовательно, длина дорожки равна 40 м.

Ответ. Б. 40 м.

10. Бильярдный шар находится в центре бильярдного стола , имеющего форму правильного треугольника . Длина каждого борта 1,5 метра. После удара шар двигался параллельно одному из бортов и отразился сначала от одного борта, затем от другого. Какова длина траектории шара от начала движения до второго столкновения с бортами? (При ударе о борт угол отражения равен углу падения).

Решение. Докажем, что шар должен быть направлен под углом 60° к первому борту стола. Действительно, если шар вышел из центра стола, точки O, и попал в точку M_1 , где OM_1 параллельно BC (см. рис.), то угол OM_1A равен углу CBA и равен 60°, так как при ударе о борт угол отражения равен углу падения. Следовательно 60° равен и угол $BM_1 M_2$,где M_2 — точка стороны BC и треугольник BM_1M_2 правильный.

Так как, углы $C M_2 O$ и $M_1 M_2 O$ ° равны 60°, то треугольник $O M_1 M_2$ тоже правильный и равный треугольнику $B M_1 M_2$. Искомая длина равна 2 $M_1 M_2$.

Центр правильного треугольника делит высоту в отношении 2:1 считая от вершины. Из построений (см. рис.) следует, что M_1M_2 =1:3 AC = 0,5. Следовательно Искомая длина равна 1м.

Ответ. Б. 1м.

11. Куб, ребро которого равно p см, где p — натуральное число, сначала покрасили, а затем разрезали на единичные кубики. Может ли количество кубиков, у которых окрашена хотя бы одна грань, равняться количеству кубиков, у которых нет ни одной окрашенной грани?

Решение. После разрезания данного кубика образуется p^3 единичных кубиков, из которых $(p-2)^3$ не имеют ни одной окрашенной грани. У остальных p^3 - $(p-2)^3$ окрашена хотя бы одна грань. Равенство p^3 - $(p-2)^3$ равносильно существованию натурального решения уравнения

$$(p-2)^3 - 6(p-2)^2 - 12(p-2) - 8=0.$$

Сделав замену x=p-2, получим уравнение $x^3=6x^2+12x+8$ или $x^3-6x^2-12x=8$. Следовательно натуральное решение уравнения является делителем числа 8. Делители числа 8: 1, 2, 4, 8. Так как ни один из этих делителей уравнению не удовлетворяет, то количество кубиков, у которых окрашена хотя бы одна грань не может равняться количеству кубиков, у которых нет ни одной окрашенной грани.

Ответ. Не может.

12. В группе детского сада 5 мальчиков и 7 девочек. На утреннике все мальчики получили по одинаковому количеству конфет, и все девочки тоже получили по одинаковому количеству конфет. Оказалось, что был только один способ раздать имеющиеся конфеты так, чтобы выполнялось указанное условие. Какое наибольшее количество конфет удовлетворяет этому условию?

Решение. Обозначим количество конфет, которое получил каждый мальчик через x, а каждая девочка через y. Тогда общее количество конфет равно

5x+7y. Задача состоит в нахождении наибольшего значения a, при котором уравнение 5x+7y=a имеет единственное решение во множестве натуральных чисел.

Так как уравнение 5x+7y=0 имеет решения x=-7, y=5 и x=7, y=-5, то уравнение 5x+7y=a будет иметь не одно решение, если x больше 5 или y больше 7

Уравнение 5x+7y = 70 имеет единственное решение x=7, y=5 во множестве натуральных чисел, так как всякое другое решение этого уравнения получается из указанного добавлением чисел кратных x=-7, y=5 и x=7, y=-5.

При натуральных a больших 70 уравнение 5x+7y=a имеет не единственное решение во множестве натуральных чисел, так как в одном из решений будет или x больше 5 или y больше 7, а тогда можно получить еще одно решение прибавив к нему или x=-7, y=5 или x=7, y=-5,

Следовательно, наибольшее количество конфет, удовлетворяющее условию задания, равно 70.

Ответ. 70.