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ПРИМЕНЕНИЕ ТЕОРИИ КОНЕЧНЫХ ПОВОРОТОВ
В КИНЕТИЧЕСКОЙ АНАЛОГИИ МЕЖДУ ЗАДАЧАМИ
РАВНОВЕСИЯ КРИВОЛИНЕЙНЫХ УПРУГИХ СТЕРЖНЕЙ
И ДВИЖЕНИЯ ГИРОСТАТА

Рассмотрена кинетическая аналогия Кирхгофа между задачами равновесия прямолинейных
упругих стержней под действием концевых усилий и движения тяжелого твердого тела с
неподвижной точкой. Рассмотрено распространение этой аналогии на задачи равновесия кри-
волинейных упругих стержней и движения гиростата (кинетическая аналогия Кирхгофа–
Лармора). Приведены необходимые сведения из теории конечных поворотов. Уравнения анало-
гий записаны в компонентах вектора конечного поворота в виде системы дифференциальных
уравнений в нормальной форме.

Ключевые слова: кинетический момент, криволинейный стержень, деформация,
гиростат, вектор конечного поворота.

Введение. В научных исследованиях часто используются аналогии. Анало-
гии основаны на одинаковых уравнениях, описывающих разные модели, в том
числе и механические, при этом физический смысл величин в разных задачах
различный. Наиболее известны электромеханические аналогии, то есть анало-
гии между механическими, электрическими и аккустическими системами. Они
основаны на уравнениях, описывающих колебательные процессы, которые до-
статочно хорошо изучены. Аналогии позволяют использовать результаты ис-
следования известной модели для изучения неизвестных явлений. Такой подход
называют методом аналогий. Аналогии существуют не только между физичес-
кими явлениями, но и между задачами, например, физики и биологии, даже
экономики.

В работе рассматривается известная аналогия Кирхгофа между задачей о
конечных деформациях прямолинейных стержней под действием концевых уси-

1Гордеев Георгий Григорьевич – канд. физ.-мат. наук, ст. науч. сотр. отд. технической
механики ИПММ, Донецк, e-mail: gordeev_g_g@mail.ru.

Gordieiev Georgie Grigorywich – Сandidate of Physical and Mathematical Sciences, Senior
Researcher, Institute of Applied Mathematics and Mechanics, Donetsk, Department of Technical
Mechanics.
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Г.Г. Гордеев

лий и задачей о движении твердого тела с неподвижной точкой. Рассматривает-
ся распространение этой аналогии на задачи о конечных деформациях криволи-
нейных стержней и движения гиростата (аналогия Кирхгофа в форме Лармора).

Для составления уравнений аналогии Кирхгофа–Лармора в качестве неза-
висимых величин используются компоненты вектора конечного поворота, явля-
ющегося инвариантным по отношению к выбору подвижной системы отсчета.

1. Постановка задачи. Уравнения кинетической аналогии Кирхго-
фа. Уравнения кинетической аналогии Кирхгофа записаны в компонентах век-
тора конечного поворота в работе [1]. Ставится задача представления уравнений
распространенной аналогии Кирхгофа (аналогии Кирхгофа–Лармора) между
нелинейной теорией криволинейных стержней и задачей о движении гиростата
в компонентах вектора конечного поворота.

Кирхгоф создал нелинейную теорию конечных деформаций тонких прямоли-
нейных стержней [2]. Им доказана теорема, утверждающая, что уравнения рав-
новесия прямолинейного упругого стержня под действием концевых сил совпа-
дают по форме с уравнениями движения тяжелого твердого тела с неподвижной
точкой. Эта теорема получила название кинетической аналогии Кирхгофа [2].

Первое применение этой теоремы связано с задачей нахождения формы рав-
новесия тонкого прямолинейного стержня для случая, когда его ось и упругая
линия плоские. Кинетическим аналогом такого стержня будет физический ма-
ятник, который вращается вокруг неподвижной оси в вертикальной плоскости
под действием силы тяжести [3]. Это – известная задача об эластике, которую
впервые решил Эйлер [3]. Приведем в векторном виде уравнения кинетической
аналогии Кирхгофа.

Нелинейные уравнения равновесия, описывающие конечные деформации пря-
молинейного тонкого стержня силами и парами сил, приложенными на его кон-
цах, имеют вид [2,4]:

d̃ L

dt
+ ω × L = Pe× γ, (1)

L = Aω, (2)

d̃ γ

dt
= γ × ω. (3)

В этих уравнениях t – длина дуги упругой линии стержня; L – его главный
момент внутренних сил в поперечном сечении; P – модуль главного вектора
концевых сил, направленный по центральной оси этих сил, единичный вектор
которой γ; e – единичный вектор касательной к упругой линии; вектор ω – век-
тор угловой скорости трехгранника главных осей кручения и изгиба стержня
при перемещении его начала вдоль упругой линии; знак ∼ означает диффе-
ренцирование в этих осях; A – матрица жесткостей стержня, вычисляемая с
использованием упругих констант материала изотропного или анизотропного
стержня.

Уравнения (1)–(3) называются уравнениями Кирхгофа [2].
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Применение теории конечных поворотов в кинетической аналогии

Если обозначить единичные векторы главных осей кручения и изгиба стерж-
ня через e1, e2, e3, вектор ω можно записать в виде [3]:

ω = −k cosχe1 + k sinχe2 +
(
κ +

dχ

dt

)
e3, (4)

где k,κ – кривизна и кручение упругой линии, а χ – угол закручивания стержня.
Такими же уравнениями (1)–(3) описывается движение тяжелого твердого

тела с одной неподвижной точкой. Фигурирующие в (1)–(3) величины в этом
случае имеют следующий смысл: t – время; L – момент количества движения
твердого тела относительно неподвижной точки; γ – единичный вектор верти-
кали; e – единичный вектор радиуса-вектора rc центра масс тела в неподвижной
точке ( e = rc

/
|rc| ); P = mg|rc|; m – масса тела, g – ускорение свободного па-

дения; ω – угловая скорость тела; знак ∼ означает дифференцирование в осях,
связанных с телом; A – матрица моментов инерции тела.

Уравнения (1)–(3) – это уравнения Эйлера движения тяжелого твердого тела
с неподвижной точкой.

2. Уравнения распространенной аналогии Кирхгофа (аналогии
Кирхгофа–Лармора). Кирхгофом и Клебшем создана нелинейная теория ко-
нечных деформаций тонких криволинейных стержней [3].

Распространение теоремы Кирхгофа о кинетической аналогии на стержни,
имеющие кривизну и кручение в первоначальном недеформированном состо-
янии (криволинейные стержни) осуществил Лармор (1864) [3]. Он установил,
что уравнения равновесия криволинейного стержня совпадают с уравнениями
движения тяжелого гиростата с одной неподвижной точкой, который представ-
ляет систему двух твердых тел. Одно тело вращается относительно неподвиж-
ной точки (несущее тело); другое тело вращается относительно оси, неизменно
связанной с первым телом (несомое тело), при этом несомых тел может быть
несколько.

Теорема Кирхгофа о кинетической аналогии может быть распространена на
криволинейные стержни, имеющие в недеформированном состоянии постоянные
кривизну и кручение. Это условие выполняется для, например, непризматиче-
ского стержня, в котором соответствующие линии сечения лежат на винтовой
поверхности, или когда ось стержня – дуга окружности и стержень не закручен,
или когда ось стержня – винтовая линия, а кручение таково, что он вновь станет
призматическим, если устранить изгиб [3]. Возможны и другие случаи.

Распространение кинетической аналогии Кирхгофа на криволинейные стерж-
ни можно назвать кинетической аналогией Кирхгофа–Лармора.

Приведём уравнения этой аналогии. Нелинейные уравнения, описывающие
конечные деформации криволинейных стержней силами и парами сил, прило-
женных на его концах, имеют вид [3]:

d̃ L

dt
+ ω × L = Pe× γ, (5)

7
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L = Aω + λ, (6)

d̃ γ

dt
= γ × ω. (7)

В этих уравнениях величины t, L, γ, e, A, ω имеют тот же смысл, что и в уравне-
ниях (1)–(3). Вектор λ характеризует криволинейность стержня в недеформиро-
ванном состоянии. Выражение для упругого момента (6) получено Клебшем [3]:

λ = −Aω0, (8)

где ω0 – вектор угловой скорости трехгранника x0, y0, z0, образуемого главными
центральными осями поперечного сечения стержня и касательной при движе-
нии его начала по оси стержня в недеформированном состоянии с единичной
скоростью

ω0 = −k0 cosχ0e10 + k0 sinχ0e20 +
(
κ0 +

dχ0

dt

)
e3, (9)

где k0,κ0 – кривизна и кручение недеформированной оси; ось x0 образует с
нормалью угол, равный

π

2
−χ0, а e10, e20, e30 – единичные векторы осей x0, y0, z0.

Такими же уравнениями (5)–(7) описывается движение тяжёлого гиростата
с неподвижной точкой [5, 6]. В этих уравнениях L – момент количества движе-
ния гиростата относительно неподвижной точки; ω – угловая скорость несущего
тела; A – матрица моментов инерции гиростата относительно его центра масс
C; γ – единичный вектор вертикали; e – единичный вектор радиус-вектора цен-
тра масс гиростата с началом в неподвижной точке C. Вектор λ, называемый
гиростатическим моментом, имеет вид [6]:

λ = I1ω1e1, (10)

где I1 – момент инерции несомого тела относительно его оси вращения; ω1 – его
угловая скорость; e1 – единичный вектор оси вращения в случае, когда гиростат
имеет одно несомое тело. Если несомых тел n, то

λ =

n∑
i=1

Aiωiei, (11)

где Ai – момент инерции i-того несомого тела; ωi – его угловая скорость; ei –
единичный вектор его оси вращения.

3. Вектор конечного поворота и его компонеты. Уравнения, описыва-
ющие конечные деформации криволинейного упругого стержня под действием
концевых усилий и движение гиростата, в гамильтоновой форме были записа-
ны в компонентах вектора конечного поворота в работе [7]. В настоящей работе
эти уравнения представлены в виде системы дифференциальных уравнений в
нормальной форме.
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Согласно теореме Эйлера, произвольное перемещение твёрдого тела с непод-
вижной точкой может быть осуществлено одним поворотом вокруг оси враще-
ния, проходящей через эту точку. Формула, связывающая радиус-вектор r до
поворота и радиус-вектор этой точки R после поворота, получена Родригом [8]
и имеет вид:

R = r +
1

1 + 1
4θ

2
θ ×

(
r +

1

2
θ × r

)
. (12)

Вектор
θ = 2n tg

χ

2
(13)

называется вектором конечного поворота Родрига. Здесь n – единичный век-
тор оси поворота; χ – угол поворота [8]. Вектор θ имеет равные проекции на
неподвижные оси с базисом e10, e20, e30 и подвижные оси с базисом e1, e2, e3:

θ = θ̃1e10 + θ̃2e20 + θ̃3e30, (14)

θ = θ1e1 + θ2e2 + θ3e3, (15)

то есть компоненты вектора конечного поворота есть инварианты по отношению
к выбору системы отсчёта:

θ1 = θ̃1, θ2 = θ̃2, θ3 = θ̃3. (16)

Модуль вектора конечного поворота

θ = |θ| = θ21 + θ22 + θ23, (17)

или
θ = 2 tg

χ

2
. (18)

Единичные базисы подвижной системы координат имеют вид [8]

ek = ek0 +
1

1 + 1
4θ

2
×
(
ek0 +

1

2
θ × ek0

)
. (19)

Базисы неподвижной и подвижной системы координат связаны с помощью мат-
рицы направляющих косинусов C: e1

e2
e3

 = C

 e10
e20
e30

 , (20)

где

C =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 . (21)
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Здесь

c11 = c
[
1 +

1

4
(2θ21 − θ2)

]
, c12 = c

(
θ3 +

1

2
θ1θ2

)
, c13 = c

(
− θ2 +

1

2
θ1θ3

)
,

c21 = c
(
− θ3 +

1

2
θ2θ1

)
, c22 = c

[
1 +

1

4
(2θ22 − θ2)

]
, c23 = c

(
θ1 +

1

2
θ2θ3

)
, (22)

c31 = c
(
θ2 +

1

2
θ3θ1), c32 = c

(
− θ1 +

1

2
θ3θ2

)
, c33 = c

[
1 +

1

4
(2θ23 − θ2)

]
,

где
c =

1

1 + 1
4θ

2
. (23)

Вектор угловой скорости ω тела–носителя гиростата (вектор кривизны в тео-
рии стержней) имеет вид:

ω = ω1e1 + ω2e2 + ω3e3, (24)

где
ω1 = ċ21c31 + ċ22c32 + ċ23c33,

ω2 = ċ31c11 + ċ32c12 + ċ33c13,

ω3 = ċ11c21 + ċ12c22 + ċ13c23.

(25)

Подставив элементы матрицы направляющих косинусов C и их производные
по t, получим

ω1 = c(θ̇1 +
1

2
θ3θ̇2 −

1

2
θ2θ̇3),

ω2 = c(−1

2
θ3θ̇1 + θ̇2 +

1

2
θ1θ̇3),

ω3 = c(
1

2
θ2θ̇1 −

1

2
θ1θ̇2 + θ̇3).

(26)

Эти соотношения можно записать в матричном виде: ω1

ω2

ω3

 = Ω

 θ̇1
θ̇2
θ̇3

 , (27)

где Ω имеет вид

Ω =

 Ω11 Ω12 Ω13

Ω21 Ω22 Ω23

Ω31 Ω32 Ω33

 ; (28)

Ω11 = c, Ω12 =
1

2
cθ3, Ω13 = −1

2
cθ2,

Ω21 = −1

2
cθ3, Ω22 = c, Ω23 =

1

2
cθ1,

Ω31 =
1

2
cθ2, Ω32 = −1

2
cθ1, Ω33 = c.

(29)

10
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Можно выразить из уравнения (27) θ̇1, θ̇2, θ̇3 через ω1, ω2, ω3 θ̇1
θ̇2
θ̇3

 = Ω−1

 ω1

ω2

ω3

 , (30)

где Ω−1 – обратная матрица матрицы Ω

Ω−1 =


Ω′
11 Ω′

12 Ω′
13

Ω′
21 Ω′

22 Ω′
23

Ω′
31 Ω′

32 Ω′
33

 ; (31)

Ω′
11 = 1 +

1

4
θ21, Ω′

12 =
1

2
(−θ3 +

1

2
θ1θ2), Ω′

13 =
1

2
(θ2 +

1

2
θ1θ3),

Ω′
21 =

1

2
(θ3 +

1

2
θ1θ2), Ω′

22 = 1 +
1

4
θ22, Ω′

23 =
1

2
(−θ1 +

1

2
θ2θ3), (32)

Ω′
31 =

1

2
(−θ2 +

1

2
θ1θ3), Ω′

32 =
1

2
(θ1 +

1

2
θ2θ3), Ω′

33 = 1 +
1

4
θ23.

В координатной форме уравнения (30) имеют вид:

θ̇1 =
(
1 +

1

4
θ21
)
ω1 +

1

2
(−θ3 +

1

2
θ1θ2)ω2 +

1

2
(θ2 +

1

2
θ1θ3)ω3,

θ̇2 =
1

2
(θ3 +

1

2
θ1θ2)ω1 + (1 +

1

4
θ22)ω2 +

1

2
(−θ1 +

1

2
θ2θ3)ω3, (33)

θ̇3 =
1

2
(−θ2 +

1

2
θ1θ3)ω1 +

1

2
(θ1 +

1

2
θ2θ3)ω2 + (1 +

1

4
θ23)ω3.

4. Уравнения аналогии в компонентах вектора конечного поворота.
Векторные уравнения равновесия криволинейного упругого стержня под дей-
ствием концевых нагрузок или уравнения движения гиростата (5) – (7) можно
записать в координатной форме в виде:

dω1

dt
= b1ω2ω3 + a1(λ2ω3 − λ3ω2 − λ̇1) + P1c23,

dω2

dt
= b2ω1ω3 + a2(λ3ω1 − λ1ω3 − λ̇2)− P2c13,

dω3

dt
= b3ω1ω2 + a3(λ1ω2 − λ2ω1 − λ̇3),

(34)

где
a1 =

1

A1
, a2 =

1

A2
, a3 =

1

A3
,

b1 =
A2 −A3

A1
, b2 =

A3 −A1

A2
, b3 =

A1 −A2

A3
,

P1 =
P

A1
, P2 =

P

A2
, P3 =

P

A3
.

(35)
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С помощью соотношений (22), (26), (35) правые части уравнений (34) можно
представить в виде:

ω̇k = c2(ak1x
2
1 + ak2x

2
2 + ak3x

2
3 + ak4x1x2 + ak5x1x3 + ak6x2x3+

+bk1x1 + bk2x2 + bk3x3 + nk) (k = 1, 2, 3),
(36)

где
x1 = θ̇1, x2 = θ̇2, x3 = θ̇3. (37)

Величины aki (k = 1, 2, 3; i = 1, 2, 3, 4, 5, 6) и bki, nk (k, i = 1, 2, 3) являются
функциями компонент вектора конечного поворота θ1, θ2, θ3:

a11 = −1

4
b1θ2θ3, a12 = −1

2
b1θ1, a13 =

1

2
b1θ1,

a14 =
1

2
b1(b2 +

1

2
θ1θ3), b15 =

1

2
b1(−θ3 +

1

2
θ1θ2), a16 = b1(1−

1

4
θ21),

b11 =
1

2
a1(1 +

1

4
θ2)(λ2θ2 + λ3θ3), b12 = −a1(1 +

1

4
θ2)(

1

2
λ2θ1 + λ3),

b13 = a1(1 +
1

4
θ2)(λ2 − λ3θ1), n1 = P1(1 +

1

4
θ2)(−θ2 +

1

2
θ1θ3)−

−a1(1 +
1

4
θ2)2λ̇1;

(38)

a21 =
1

2
b2θ2, a22 = −1

4
b2θ1θ3, a23 = −1

2
b2θ2,

a24 =
1

2
b2(−θ1 +

1

2
θ2θ3), a25 = b2(1−

1

4
θ22), a26 =

1

2
b2(−θ3 +

1

2
θ1θ2),

b21 = a2(1 +
1

4
θ2)(λ2 −

1

2
λ1θ2), b22 =

1

2
a2(1 +

1

4
θ2)(λ2θ3 + λ1θ1),

b23 = −a2(1 +
1

4
θ2)(

1

2
θ2λ2 + λ1),

n2 = P2(1 +
1

4
θ2)(θ2 −

1

2
θ1θ3)− a2(1 +

1

4
θ2)2λ̇2;

(39)

a31 = −1

2
b3θ3, a32 =

1

2
b3θ3, a33 = −1

4
b3θ1θ2,

a34 = b3(1−
1

4
θ23), a35 =

1

2
b3(θ1 +

1

2
θ2)θ3), a36 =

1

2
b3(−

1

2
θ1θ2),

b31 = −a3(1 +
1

4
θ2)(λ1θ3 + λ2), b32 = a3(1 +

1

4
θ2)(λ1 −

1

2
λ2θ3),

(40)
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b33 =
1

2
a3(1 +

1

4
θ2)(θ1λ1 − θ2λ2),

n3 = −a3(1 +
1

4
θ2)2λ̇3.

С помощью соотношений (27), (28) выразим ω̇1, ω̇2, ω̇3 через x1, x2, x3 и

θ̈1 = ẋ1, θ̈2 = ẋ2, θ̈3 = ẋ3, (41)

в результате чего получим

ω̇1 = c(ẋ1 +
1

2
θ3ẋ2 −

1

2
θ2ẋ3) +

ċ

c
ω1,

ω̇2 = c(−1

2
θ3ẋ1 + ẋ2 +

1

2
θ1ẋ3) +

ċ

c
ω2,

ω̇3 = c(
1

2
θ2ẋ1 −

1

2
θ1ẋ2 + ẋ3) +

ċ

c
ω3,

(42)

где

ċ = −1

2
c2(θ1x1 + θ2x2 + θ3x3). (43)

В матричном представлении уравнения (42) можно записать в виде ω̇1

ω̇2

ω̇3

 = Ω

 ẋ1
ẋ2
ẋ3

+
ċ

c
Ω

 x1
x2
x3

 ,

или  ẋ1
ẋ2
ẋ3

 = Ω′

 ω̇1

ω̇2

ω̇3

− ċ

c

 x1
x2
x3

 , (44)

где обратная матрица Ω′ = Ω−1 вычисляется по формулам (31), (32).
Вычислим первое слагаемое в правой части последнего уравнения, обозначив

его  g1
g2
g3

 = Ω′

 ω̇1

ω̇2

ω̇3

 . (45)

В результате вычислений получим величины

gk = c2(p′k1x
2
1 + p′k2x

2
2 + p′k3x

2
3 + p′k4x1x2 + p′k5x1x3 + p′k6x2x3+

+qk1x1 + qk2x2 + qk3x3 + nk) (k = 1, 2, 3),
(46)
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где

p′km =
3∑

i=1
Ω′
kiaim,

qkm =
3∑

i=1
Ω′
kibim,

nk =
3∑

i=1
Ω′
kini.

(47)

Второе слагаемое в уравнении (44) обозначим g′1
g′2
g′3

 = − ċ
c

 x1
x2
x3

 . (48)

Подставив ċ по формуле (43), представим g′k (k = 1, 2, 3) в виде

g′k = c2(p1k1x
2
1 + p1k2x

2
2 + p1k3x

2
3 + p1k4x1x2 + p1k5x1x3 + p1k6x2x3), (49)

где

p111 =
1

2
(1 +

1

4
θ2)θ1, p112 = 0, p113 = 0,

p114 =
1

2
(1 +

1

4
θ2)θ2, p115 = −1

2
(1 +

1

4
θ23), p116 = 0,

(50)

p121 = 0, p122 = −1

2
(1 +

1

4
θ2)θ2, p123 =

1

2
(1 +

1

4
θ2)θ3,

p124 =
1

2
(1 +

1

4
θ2)θ1, p125 = 0, p126 = 0,

(51)

p131 = 0, p132 = 0, p133 =
1

2
(1 +

1

4
θ2)θ3,

p134 = 0, p135 =
1

2
(1 +

1

4
θ2)θ1, p136 =

1

2
(1 +

1

4
θ2)θ2.

(52)

Введём обозначения

pkm = p′km + p1km (k = 1, 2, 3; m = 1, 2, 3, 4, 5, 6). (53)

Уравнения (34) аналогии в компонентах вектора конечного поворота в вектор-
ной форме можно записать в виде

dy

dt
= f(y), (54)

где
y = (θ1, θ2, θ3, x1, x2, x3). (55)
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В координатном виде уравнения можно записать в следующей форме

dθ1
dt

= x1, (56)

dθ2
dt

= x2, (57)

dθ3
dt

= x3, (58)

dx1
dt

= c2(p11x
2
1 + p12x

2
2 + p13x

2
3 + p14x1x2 + p15x1x3 + p16x2x3+

+q11x1 + q12x2 + q13x3 + n1),
(59)

dx2
dt

= c2(p21x
2
1 + p22x

2
2 + p23x

2
3 + p24x1x2 + p25x1x3 + p26x2x3+

+q21x1 + q22x2 + q23x3 + n2),
(60)

dx3
dt

= c2(p31x
2
1 + p32x

2
2 + p33x

2
3 + p34x1x2 + p35x1x3 + p36x2x3+

+q31x1 + q32x2 + q33x3 + n3).
(61)

Выводы. Уравнения кинетической аналогии между задачами равновесия
криволинейных упругих стержней и движения гиростата в компонентах векто-
ра конечного поворота являются базовыми для любых обобщённых координат.
Выразив, например, компоненты вектора поворота через углы Эйлера или па-
раметры Родрига–Гамильтона (параметры Эйлера), можно получить уравнения
аналогии в этих переменных. Из полученных уравнений распространённой ана-
логии Кирхгофа, положив λ1 = 0, λ2 = 0, λ3 = 0, можно получить уравнения
классической аналогии Кирхгофа между задачей о равновесии прямолинейного
упругого стержня под действием концевых нагрузок и задачей о движении тяжё-
лого твёрдого тела с неподвижной точкой. Правые части полученных уравнений
являются рациональными функциями, которые представлены в виде полиномов,

делённых на (1+
1

4
θ2)2, причём 1+

1

4
θ2 ̸= 0, что не приводит к особенностям. Та-

кое представление правых частей уравнений удобно при применении численных
методов и реализации в виде компьютерных программ, а также для применения
приближённых методов исследования.

Работа выполнена при финансовой поддержке Министерства науки и выс-
шего образования РФ в рамках реализации программы регионального Азово-
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1. Илюхин А.А. Уравнения Эйлера–Кирхгофа в компонентах вектора конечного поворота
/ А.А.Илюхин, Г.Г. Гордеев // Вестник Таганрогского государственного педагогического
института. Физико-математические и естественные науки. – 2013. – №1. – С. 1–8.

15



Г.Г. Гордеев

2. Кирхгоф Г. Механика / Г. Кирхгоф. – М.: Изд-во АН СССР, 1962. – 403 с.
3. Ляв A. Математическая теория упругости / A.Ляв . – М.–Л.: Научно-техническое изд-во

АН СССР, 1935. – 674 с.
4. Илюхин А.А. Пространственные задачи нелинейной теории упругих стержней / А.А.Илю-

хин. – К.: Наук. думка, 1979. – 216 с.
5. Виттенбург Й. Динамика систем твердых тел / Й.Виттенбург. – М.: Мир, 1980. – 294 с.
6. Горр Г.В. Движение гиростата / Г.В. Горр, А.М.Ковалев. – К.: Наук. думка, 2013. – 408 с.
7. Гордеев Г.Г. Уравнения Эйлера–Кирхгофа в гамильтоновой форме (обобщенные коорди-

наты – компоненты вектора конечного поворота) / Г.Г. Гордеев // Сборник трудов горно-
электромеханического факультета ДонГТУ. – 1996. – С. 40–44.

8. Лурье А.И. Аналитическая механика / А.И.Лурье. – М.: Физматгиз, 1961. – 824 с.

G.G. Gordieiev
Application of the theory of finite rotations in the kinetic analogy between the problems
of equilibrium of curvilinear elastic rods and the motion of a gyrostat.

Described kinetic analogy of Kirchhoff between the problems of equilibrium of rectilinear elastic rods
under the action of end forces and the motion of a heavy rigid body with a fixed point.Described
extension of this analogy to the problems of equilibrium of curvilinear elastic rods and gyrostat
motion (Kirchhoff – Larmore kinetic analogy). The necessary information from the theory of finite
rotations is provided. The analogy equations are written in the components of the final rotation
vector as a system of differential equations in normal form.

Keywords: kinetic moment, curved rod, deformation, gyrostat, final rotation vector.

Статья поступила в редакцию 06.11.2025;
доработана 03.12.2025;
рекомендована к печати 19.12.2025.

16



ISSN 0136-4545 Журнал теоретической и прикладной механики. №4 (93) / 2025.

МЕХАНИКА ДЕФОРМИРУЕМОГО ТВЕРДОГО ТЕЛА

УДК 539.3
doi:10.24412/0136-4545-2025-4-17-28
EDN:YASICO

©2025. Е.В. Авдюшина1, Р.Н. Нескородев2

ИССЛЕДОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ
ГОРНОГО ПОЛУПРОСТРАНСТВА С ГОРИЗОНТАЛЬНОЙ
ВЫРАБОТКОЙ КРИВОЛИНЕЙНОГО СЕЧЕНИЯ И
РАЗГРУЗОЧНЫМИ ЩЕЛЯМИ ОБОБЩЕННЫМ МЕТОДОМ
НАИМЕНЬШИХ КВАДРАТОВ

С использованием комплексных потенциалов и обобщенного метода наименьших квадратов
решена задача по определению напряженного состояния горного массива с выработкой вбли-
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но распределенные внешние усилия. Криволинейное сечение выработки и разгрузочные щели
аппроксимируются дугами эллипсов и берегами разрезов. Методом комплексных потенциалов
на основе конформных отображений, разложений голоморфных функций в ряды Лорана и
использования метода интегралов типа Коши получены общие представления комплексных
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Введение. Проектирование подземных сооружений вблизи дневной поверх-
ности часто сталкивается с вопросом возникновения зон высокой концентрации
напряжений, приводящих к изменению форм этих сооружений или даже к раз-
рушению горных пород. Задачи по определению таких зон и уровней концен-
трации напряжений, зависимости их от параметров выработок и разгрузочных
щелей могут рассматриваться как соответствующие задачи теории упругости по
определению напряженного состояния упругого тела с отверстиями и трещина-
ми. А решения последних задач в случае двумерного напряженного состояния
удобнее всего проводить с использованием комплексных потенциалов плоской
задачи теории упругости анизотропного тела [1].

Возможность применения метода комплексных потенциалов в задачах по
определению напряженного состояния анизотропного горного массива с выра-
ботками различной конфигурации представлено в работе [2]; сделан вывод о
преимуществах прочностных свойств выработок с сечениями сводчатой фор-
мы. При этом для удовлетворения граничным условиям на контурах вырабо-
ток применялся достаточно громоздкий дискретный метод наименьших квад-
ратов, а также не было рассмотрено расположение выработки вблизи дневной
поверхности. Аналогичным методом, но для изотропного массива с выработ-
кой вблизи дневной поверхности, напряженное состояние изучено в работе [3].
Численные исследования напряженного состояния горного изотропного масси-
ва с выработками различных конфигураций приведены в [4], что также под-
тверждает преимущество использования выработок со сводчатым контуром и
необходимость проведения дальнейших исследований. В работах [5, 6] решена
задача теории упругости для многосвязной анизотропной полуплоскости с ис-
пользованием комплексных потенциалов и удовлетворением граничным услови-
ям на прямолинейной границе методом интегралов типа Коши, а на остальных
контурах – обобщенным методом наименьших квадратов (ОМНК) [7].

В данной статье решена задача по определению напряженного состояния
анизотропного массива горных пород с горизонтальной выработкой вблизи днев-
ной поверхности. Проведены численные исследования по определению двумер-
ного напряженного состояния массива и установлены закономерности распреде-
ления напряжений около поверхности горной выработки, концентрации напря-
жений и ее снижения с помощью разгрузочных щелей.

1. Постановка и решение задачи. Рассмотрим анизотропную многосвяз-
ную полуплоскость с прямолинейной границей и произвольными отверстиями
и трещинами (рис. 1), которая является поперечным сечением горного массива
с туннельными выработками и ленточными разгрузочными щелями. Контуры
отверстий могут иметь произвольную криволинейную конфигурацию, которую
будем аппроксимировать дугами эллипсов и берегами прямолинейных разре-
зов. Поэтому контуры отверстий будем считать эллиптическими, а как частный
случай – прямолинейными разрезами, когда одна из полуосей равна нулю. В
связи с этим будем рассматривать многосвязную полуплоскость S, ограничен-
ную прямолинейной границей L+ и контурами эллиптических отверстий Ll с
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полуосями al, bl
(
l = 1, L

)
. Начало прямоугольной системы координат Oxy вы-

берем в произвольной точке полуплоскости на расстоянии h+ от прямолинейной
границы; ось Ox направим параллельно прямолинейной границе. Для каждого
из эллипсов выберем локальную систему координат Olxlyl эллипса Ll с началом
в центре соответствующего эллипса и направлением оси Oxl вдоль полуоси al.
В этом случае параметрические

Рис. 1.

уравнения эллипсов Ll в локальных системах координат Olxlyl имеют вид

xl = al cos θ, yl = bl sin θ, (1)

а в основной системе координат Oxy представляются в виде

x = x0l + xl cos φl − yl sin φl, y = y0l + xl sinφl + yl cosφl, (2)

где θ − угловая переменная параметрического задания эллипса, изменяющаяся
от 0 до 2π; x0l, y0l – координаты начала локальной системы координат Olxlyl в
основной системе координат Oxy; φl − угол между направлениями осей Ox и
Olxl, отсчитываемый от оси Ox против часовой стрелки.

Пусть на конечном отрезке [α, β] прямолинейной границы L+ действуют
непрерывно распределенные внешние усилия, а остальная ее часть свободна от
усилий; контуры отверстий Ll не загружены и не подкреплены.

Если для определения напряженного состояния рассматриваемой полуплос-
кости использовать комплексные потенциалы, то решение задачи сводится к на-
хождению функций Φk (zk) (k = 1, 2) обобщенных комплексных переменных [1]

zk = x+ µky, (3)

где µk – корни характеристического уравнения

a11µ
4 − 2a16µ

3 + (2a12 + a66)µ
2 − 2a26µ+ a22 = 0, (4)

aij – коэффициенты деформаций материала полуплоскости.
Комплексные потенциалы Φk (zk) определены в нижних полуплоскостях Sk,

получаемых из рассматриваемой полуплоскости S аффинными преобразовани-
ями (3) и ограниченных контурами L+

k и Lkl, соответствующими контурам L+ и
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Ll при этих преобразованиях. Тогда общие представления комплексных потен-
циалов для многосвязной области после конформных отображений внешностей
единичных кругов |ζkl| ≥ 1 на внешности контуров Lkl и разложения потенциа-
лов в ряды Лорана запишем в виде [8]

Φk (zk) =

L∑
l=1

∞∑
n=1

aklnφkln (zk) , (5)

где φkln (zk) = 1/ζnkl; akln – неизвестные коэффициенты рядов; ζkl – переменные,
определяемые из конформных отображений [8]

zk = zkl +Rkl

(
ζkl +

mkl

ζkl

)
(6)

внешности единичных кругов |ζkl| ≥ 1 на внешности эллипсов Lkl областей Sk;

zkl = x0l + µky0l,

Rkl =
al (cosφl + µk sinφl) + i bl (sinφl − µk cosφl)

2
, (7)

mkl =
al (cosφl + µk sinφl)− i bl (sinφl − µk cosφl)

2Rkl
.

Для многосвязных областей граничные условия на контурах Ll удобнее ис-
пользовать в дифференциальной форме

2Re
2∑

k=1

giklδksΦ
′
k(tk) = f ′il(t) (i = 1, 2), (8)

где δks = dzk/ds;

g1kl = 1, g2kl = −µk, f ′1l(t) = ∓Yln, f ′2l(t) = ∓Xln;

Xln, Yln – проекции на оси основной системы координат внешних усилий на
контурах Ll.

Из аналогичных (8) граничных условий на прямолинейной границе L+ при
δks = 1 имеем

Φ′
k (tk) + r̄1kΦ

′
k (tk) + r̄2,k+1Φ

′
k+1 (tk+1) = f+k (t), (9)

где
r̄1k =

µ̄k − µk+1

µk − µk+1
, r̄2,k+1 =

µ̄k+1 − µk+1

µk − µk+1
,

f+k (t) =

{
−X+

n +µk+1Y
+
n

µk−µk+1
на отрезке [α, β] ,

0 вне отрезка [α, β] ;
(10)
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k – индекс, принимающий значения 1, 2, причем значение индекса k + 1 при
k = 2 формально полагается равным 1; X+

n , Y
+
n – проекции на оси основной

системы координат действующих на отрезке [α, β] прямолинейной границы L+

внешних усилий.
Так как контуры отверстий полностью лежат внутри полуплоскости, прове-

дем удовлетворение граничным условиям (9) на прямолинейной границе мето-
дом интегралов типа Коши. Тогда, учитывая представление (5), для производ-
ных комплексных потенциалов, точно удовлетворяющих граничным условиям
на прямолинейной границе, получаются выражения [5, 6]

Φ′
k (zk) = F+

k (zk)+

+
L∑
l=1

∞∑
n=1

[
φ′
kln(zk)akln −r̄1kφ

′+
kln(zk)ākln − r̄2,k+1φ

′+
k+1ln(zk)āk+1,ln

]
,

(11)

где akln – неизвестные коэффициенты разложений функций в ряды Лорана,
которые будем определять из граничных условий (8) на контурах отверстий
ОМНК [7];

F
′+
k (zk) = − 1

2πi

∫
L+

f+k (t)dt

t− zk
, (12)

φ′
kln (zk) = − n

Rklζ
n−1
kl

(
ζ2kl −mkl

) ,
φ

′+
k+j, ln (zk) = − n

Rkl

(
ζ+k+j,l

)n−1
((

ζ+k+j,l

)2
−mkl

) (j = 0, 1) .

При этом переменные ζ+k+j,l получаются на основе перехода в конформных отоб-
ражениях (6) к сопряженным величинам, а также на основе конформных отоб-
ражений внешностей единичных окружностей

∣∣∣ζ+k+j, l

∣∣∣ ≥ 1 на внешности вообра-

жаемых контуров L+
k+j, l верхней полуплоскости по формулам [5, 6]

zk+j = tk + (µk+j − µk)h
+ = zk+j,l+Rk+j,l

(
ζ+k+j,l +

mk+j,l

ζ+k+j,l

)
(j = 0, 1) , (13)

в которых переменная ζ̄ для лучшего восприятия заменена на ζ+, что подчер-
кивает ее связь с краевыми условиями на границе L+.

Выбрав систему точек Mpm (xpm, ypm)
(
p = 1, L, m = 1, Mp

)
на каждом из

контуров Lp области S и подставив функции (11) в граничные условия (8), для
определения неизвестных постоянных akln получим следующую систему линей-
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ных алгебраических уравнений:

2Re

2∑
k=1

L∑
l=1

∞∑
n=1

gikpδks×

×
[
φ′
kln (tkpm) akln − r̄1kφ

′+
kln(tkpm)ākln − r̄2,k+1φ

′+
k+1,ln(tkpm)āk+1,ln

]
=

= −2Re
2∑

k=1

δksF
+
k (tkpm)

(
i = 1, 2; p = 1, L+ 1; m = 1, Mp

)
.

(14)

Решениями системы (14) методом сингулярных разложений [9, 10] являются
постоянные akln. После их определения функции Φ′

k(zk) становятся известными,
что позволит вычислять в любой точке полуплоскости основные напряжения по
формулам

(σx, σy, τxy) = 2Re
2∑

k=1

(
µ2

k
, 1, −µk

)
Φ′
k (zk) (15)

и нормальные напряжения на произвольных площадках с нормалью n и каса-
тельной s

σn = σx cos
2(nx) + σy cos

2(ny) + 2τxy cos(nx) cos(ny),

σs = σx cos
2(ny) + σy cos

2(nx)− 2τxy cos(nx) cos(ny),

τns = (σy − σx) cos(nx) cos(ny) + τxy
(
cos2(nx)− cos2(ny)

)
.

(16)

2. Решение задачи о разгрузке поверхностей горных выработок в
полупространстве. Пусть в массиве горных пород, обладающих в общем слу-
чае свойствами прямолинейно-анизотропного тела, вблизи дневной поверхности
проведена горизонтальная выработка криволинейного сечения. На дневной по-
верхности расположены сооружения или имеется элемент рельефа местности,
которые создают в зонах расположения механические воздействия на полупро-
странство в плоскости деформации горного массива, не изменяющиеся в рас-
сматриваемой модели вдоль выработки.

Тогда определение напряженного состояния в массиве сводится к решению
задачи теории упругости для анизотропной полуплоскости с криволинейным
отверстием при заданных на прямолинейной границе усилиях, моделируемых
равномерно распределенным давлением интенсивности q на отрезке [α, β].

Исходя из практики чаще всего применяются выработки сводчатого сечения
[2, 4], поэтому длину основания выработки будем считать равной 5r, длины боко-
вых сторон – 2r, высоту крышки свода – 2r, где r – масштабная единица длины
(рис. 2), в результате чего высота всей выработки имеет величину 4r. Купол
эллипса будем считать половиной контура эллипса L1. Прямолинейные участки
боковых сторон и основания свода будем аппроксимировать внешними берега-
ми разрезов, представленных эллипсами L2, L3, L4. При этом для их полуосей
имеют место равенства bl = 10−4al, что соответствует известному неравенству
bl ≤ 10−3al [8], когда эллипс можно считать прямолинейным разрезом-трещиной.
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Рис. 2.

Расстояние от вершины крышки свода до дневной поверхности (прямоли-
нейной границы полуплоскости) обозначим через c, также примем h+ = 0.

Тогда комплексные потенциалы имеют вид (11) при

F
′+
k (zk) =

1

2πi

µk+1q

µk − µk+1

∫ β

α

dt

t− zk
=

1

2πi

µk+1q

µk − µk+1
ln
zk − β

zk − α
;

L = 4;

L1 : a1 = 2, 5r, b1 = 2r, x01 = 0, y01 = a2 = r, φ1 = 0;

L2 : a2 = r, b2 = 10−4a2, x02 = −a3 = −2, 5r, y02 = 0, φ 2 = π/2;

L3 : a3 = 2, 5r, b3 = 10−4a3, x03 = 0, y03 = −a2 = −r, φ3 = π;

L4 : a4 = r, b4 = 10−4a4, x04 = a3 = 2, 5r, y04 = 0, φ4 = 3π/2.

(17)

При этом для всех аппроксимирующих элементов в процессе формирования
множества точек, для которых составляются уравнения системы (14), угло-
вая переменная θ параметрического задания эллипсов (1) изменяется от 0 до
π (0 ≤ θ ≤ π).

Решение задачи для выработки в изотропном горном массиве получается,
как частный случай из приведенного. При этом один из коэффициентов дефор-
мации aij необходимо брать незначительно отличным от реального, например,
a11 и a22 брать отличающимися друг от друга в пятой – шестой значащих цифрах
в конце. Тогда получим случай слабой анизотропии и корни характеристическо-
го уравнения (4) будут близки к мнимой единице i. Разработанное программное
приложение позволяет в этом случае вычислять значения напряжений, практи-
чески совпадающие с решением задачи теории упругости для изотропной полу-
плоскости [3].

3. Описание результатов численных исследований. На базе разрабо-
танной численно-аналитической методики проведены исследования распределе-
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ния напряжений вокруг горной выработки без разгрузочных щелей и с раз-
грузочными щелями в зонах высокой концентрации напряжений. При этом все
значения напряжений получены с точностью до интенсивности равномерного
давления q на участке прямолинейной границы [−α, α]. При проведении чис-
ленных исследований количество «коллокационных точек» Mp на Lp

(
p = 1, L

)
,

для которых составлялись уравнения системы (14), и количество членов в беско-
нечных рядах Лорана (11) увеличивалось до тех пор, пока граничные условия
на контурах не удовлетворялись с достаточно высокой степенью точности. В
описываемых ниже случаях для удовлетворения краевым условиям на свобод-
ных граничных поверхностях с достижением соответствующими нормальными
напряжениями на площадках, касательных к контурам, значений менее 10−3,
необходимо было в указанных рядах оставлять от 20 до 40 членов, и на каждом
из контуров брать от 100 до 350 «коллокационных точек».

Исследования проведены для горных массивов из трансверсально-изотропного
алевролита (материал М1) и гранита изотропного с возмущенными механиче-
скими характеристиками (материал М2). Технические постоянные этих мате-
риалов приведены в таблице 1 [11]. Заметим, что коэффициенты деформации
aij по известным техническим постоянным вычисляются с использованием фор-
мул: a11 = 1/E1, a22 = 1/E2, a12 = −v21/E1 = −v12/E2, a66 = 1/G12. В случае
квазиизотропного материала М2 модуль Юнга E2 для применимости разрабо-
танной и программно реализованной методики выбран, как было описано ранее,
несколько отличным от E1; получаемые при этом значения напряжений отлича-
ются от напряжений в массиве изотропного гранита на величины менее сотых
долей процента.

Таблица 1. Технические постоянные материалов
Материал E1, МПа E2, МПа G12, МПа ν21

M1 10740 5230 12000 0,413
М2 4200 4199 17000 0,22

В таблице 2 даны значения напряжений σs/q вдоль контура свода (17) (рис. 2)
в зависимости от угловой переменной θ параметрического задания эллипсов L1,
L2, L3 для свода в массиве из алевролита (М1) и гранита (М2). Значения приве-
дены для левой половины свода, для правой половины они легко восстанавлива-
ются в силу симметрии напряженного состояния относительно оси Oy. При этом
в исследовании приведены результаты для различных значений длины c пере-
мычки между вершиной свода и дневной поверхностью, а также в зависимости
от ширины участка загружения [−α, α] дневной поверхности.

Как следует из данных таблицы 2, вблизи вершин углов основания свода
(точки C и D) возникает весьма высокая концентрация сжимающих напря-
жений, которая может приводить к разрушению породы в этих зонах; вблизи
середины почвы выработки (точка G) возникают растягивающие напряжения,
которые могут приводить здесь к выпучиванию пород; по поверхности купола
возникают сжимающие напряжения и положительные напряжения вблизи вер-
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Таблица 2. Значения σs/q в некоторых точках сторон левой половины свода
в зависимости от расстояния c и длины отрезка [−α, α]

Сторона θ(рад.)

Материал
М1 М2

[−r, r] [−2r, 2r] [−3r, 3r] [−r, r]
c/r c/r c/r c/r

2 1 0,5 2 1 2 1 1 0,5

L1

90π/180 1,851 3,839 7,523 2,308 4,016 2,137 3,319 2,605 5,421
135π/180 -1,176 -2,332 -4,187 -1,957 -3,734 -2,189 -3,877 -2,994 -5,792
178π/180 -0,987 -1,314 -1,553 -1,913 -2,525 -2,668 -3,469 -1,239 -1,434
179π/180 -0,933 -1,241 -1,454 -1,810 -2,387 -2,528 -3,288 -1,183 -1,345

L2

π/180 -1,826 -1,678 -7,015 -3,590 -3,125 -5,165 -4,182 0,562 -7,989
2π/180 -1,270 -1,387 -2,938 -2,488 -2,652 -3,551 -3,642 -0,391 -2,898
45π/180 -0,655 -0,832 -0,951 -1,279 -1,617 -1,815 -2,273 -0,764 -0,857
90π/180 -0,492 -0,591 -0,636 -0,969 -1,165 -1,401 -1,682 -0,526 -0,547
135π/180 -0,485 -0,552 -0,557 -0,964 -1,108 -1,418 -1,642 -0,470 -0,445
178π/180 -3,519 -3,609 -2,695 -7,219 -7,791 -11,091 -12,463 -2,734 -1,472
179π/180 -10,012 -10,292 -7,026 -20,558 -22,295 -31,614 -35,745 -8,143 -4,022

L3

π/180 -4,883 -4,511 -2,086 -10,331 -10,579 -16,488 -18,215 -1,955 -0,173
2π/180 -1,490 -1,231 -0,268 -3,237 -3,136 -5,328 -5,756 -0,484 0,274
45π/180 0,226 0,295 0,396 0,420 0,521 0,561 0,656 0,201 0,268
90π/180 0,207 0,261 0,339 0,389 0,469 0,529 0,605 0,173 0,225

шины (точка E); концентрация сжимающих напряжений наблюдается в углах
крышки значительно ниже концентрации напряжений вблизи углов основания.
Ширина участка загружения дневной поверхности практически не влияет на
значения напряжений в вершине свода, оказывая значительные влияния на зна-
чения напряжений в других зонах. Также видно, что на значения напряжений
степень анизотропии материала породы оказывает влияние в углах основания
выработки, здесь значения модулей сжимающих напряжений из М1 почти в 1,5
раза больше аналогичных напряжений для выработки из М2.

Высокую концентрацию напряжений возможно снизить за счет проведения в
зонах ее возникновения разгрузочных щелей-трещин, моделируемых плоскими
щелями в виде эллиптических разрезов с весьма малыми полуосями bl, т. е. когда
bl/al мало.

Для разгрузки напряжений в центре основания и около угловых точек ос-
нования свода проведены разгрузочные щели – наклонные эллиптические щели
L23 и L34 с полуосями a23 = a34 из точек пересечения сторон L2 и L3, L3 и L4

основания свода вдоль биссектрис углов их пересечения (рис. 3, а)

L23 : a23, b23 = 10−4a23, x023 = −a3, y023 = −a2, φ 23 = 3π/4;

L34 : a34 = a23, b34 = 10−4a34, x034 = a3 = 2, 5r, y034 = −a2, φ 34 = −π/4
(18)

и вертикальная разгрузочная эллиптическая щель в центре основания L3

(рис. 3, б) с расчетными параметрами

L33 : a33, b33 = 10−4a33, x033 = 0, y033 = −a2, φ 23 = −π/2. (19)
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Рис. 3.

В таблице 3 для массива из материала М1 даны значения напряжений σs/q
вдоль контура свода в зависимости от параметров θ параметрических заданий
эллипсов L1, L2, L3 для различных длин разгрузочных щелей a23/r и вертикаль-
ного разреза a33/r. При этом считалось, что длина перемычки c = r, отрезок
загружения [−r, r].

Таблица 3. Значения σs/q в некоторых точках сторон левой половины свода в
зависимости от длины наклонных a23/r и вертикальной a33/r разгрузочных разрезов

Сторона θ(рад.)

a23/r
0 0,5 1

a33/r a33/r a33/r
0 0 0,1 0,2 0,3 0,5 0

L1

90π/180 3,839 3,811 3,813 3,813 3,813 3,818 3,786
45π/180 -2,332 -2,333 -2,333 -2,333 -2,333 -2,332 -2,333
178π/180 -1,314 -1,285 -1,312 -1,289 -1,283 -1,284 -1,246
179π/180 -1,241 -1,214 -1,271 -1,224 -1,211 -1,214 -1,176

L2

π/180 -1,678 -1,122 -0,998 -0,349 -1,311 -1,004 -1,006
2π/180 -1,387 -1,130 -1,003 -0,814 -1,207 -1,083 -1,051
45π/180 -0,832 -0,791 -0,784 -0,789 -0,790 -0,789 -0,746
90π/180 -0,591 -0,502 -0,499 -0,501 -0,501 -0,499 -0,432
135π/180 -0,552 -0,248 -0,247 -0,247 -0,246 -0,244 -0,173
178π/180 -3,609 0,004 -0,003 0,001 -4*10−4 0,002 0,007
179π/180 -10,292 0,030 3*10−4 0,008 0,004 0,009 0,040

L3

π/180 -4,511 0,002 0,005 -0,003 0,001 -0,004 -0,014
2π/180 -1,231 -0,005 -3*10−4 -0,004 -0,002 -0,004 -0,012
45π/180 0,295 0,255 0,250 0,240 0,224 0,190 0,167
88π/180 0,262 0,265 -0,056 -0,029 -0,029 -0,011 0,222
89π/180 0,261 0,265 -0,139 0,003 -0,011 3*10−4 0,222
90π/180 0,261 0,265 – – – – 0,222
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Как следует из таблицы 3, технологическое создание наклонных разгрузоч-
ных щелей в углах основания свода даже при небольшой длине приводит к
разгрузке вблизи вершины углов С и D основания, причем достаточно выбрать
a23 = a34 = 0, 5 r. При этом значения напряжений в других зонах, в том числе
и в зоне выпучивая на основании, практически не изменяются. Дополнительное
проведение вертикальной разгрузочной щели L33 снимает выпучивающие на-
пряжения в середине основания (точка G), незначительно снижая их в других
зонах. Также необходимо проведение дальнейших исследований по уменьшению
выпучивающих напряжений вблизи купола свода.
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E.V. Avdyushina, R.N. Neskorodev
Stress state analysis of a geological half-space with a horizontal working of curvilinear
cross-section and relief slots using the generalized least-squares method.

Using complex potentials and the generalized least squares method, we solved the problem of
determining the stress state of a rock mass with a working near the surface and unloading around
the working surface of a curved cross-section with band cracks when uniformly distributed external
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forces act across the surface. The curvilinear cross-section of the working and the unloading cracks
are approximated by elliptical arcs and the edges of the cuts. Using the complex potential method,
we obtained general representations of complex potentials based on conformal mappings, Laurent
series expansions of holomorphic functions, and the Cauchy integral method. A generalized least
squares method was used to find the Laurent series coefficients from the boundary conditions on
the contours of the working cross-sections and cracks. Numerical studies were performed to examine
the influence of model parameters such as the distance from the working to the surface, the length
of the load application segment on the straight boundary, and the length of the relief cracks on
stress values around the working.

Keywords: stress concentration, half-space, loading near working surfaces, relief cracks, two-
dimensional stress model, complex potentials, generalized least squares method.
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О ФОРМОИЗМЕНЕНИИ НАВОДОРОЖЕННЫХ ПАЛЛАДИЕВЫХ
ПЛАСТИН В ПРОЦЕССЕ ИХ ДЕГАЗАЦИИ

В настоящей статье описаны закономерности формоизменения наводороженной палладиевой
пластины в процессе ее дегазации. Установленные экспериментально закономерности водоро-
доупругого формоизменения образцов могут быть использованы в технологиях водородной
обработки и для решения прикладных задач водородной энергетики.
Ключевые слова: водород в металлах, водородоупругость, палладиевая пластинка,
формоизменение

Введение. Безопасное хранение водорода – одна из актуальных задач водо-
родной энергетики. Перспективным является способ хранения водорода в метал-
логидридах. Поэтому эксперименты по изучению процессов сорбции и десорбции
водорода гидридообразующими металлами позволяют решать не только раз-
личные теоретические задачи, стоящие перед исследователями взаимодействия
водорода с материалами, но и имеют чисто практическое значение.

Процессы диффузии атомов водорода в металлах и возникновение при этом
упругих напряжений вызывают разнообразные эффекты, которые являются раз-
личными сторонами одного явления – водородоупругости [1]. Распределение во-
дорода, вызываемое градиентами его концентрации, а также деформацией сре-
ды, описывается системой связанных дифференциальных уравнений в частных
производных, называемых уравнениями водородоупругости [2]. Этой же систе-
мой описывается и обратный эффект – деформация металла, вызванная про-
цессом распределения водорода. Её решение в аналитическом виде вызывает
трудности. Для решения задач такого рода используются численные методы [3].

Цель настоящей работы – установить закономерности формоизменения на-
водороженной палладиевой пластины в процессе ее дегазации.

1. Методика проведения исследований. В исследованиях была исполь-
зована водородо-вакуумная установка, которая позволяет проводить бароупру-
гое нагружение образцов водородом, наблюдать и измерять стрелу прогиба кон-
сольно закрепленной пластинки в ходе эксперимента. На рисунке 1 показана ра-
бочая камера данной установки, выполненная из нержавеющей стали, и ее связь

1Глухова Жанна Лукьяновна – канд. физ.-мат. наук, доцент каф. физики ДонНТУ, До-
нецк, e-mail: zhglukhova@yandex.ru.

Glukhova Zhanna Lukyanovna – Candidate of Physical and Mathematical Sciences, Associate
Professor, Donetsk National Technical University, Donetsk, Chair of Physics.
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с другими блоками. Образец (1) из палладиевой фольги жестко крепится одним
концом в держателе (2). Наблюдение за изгибом образца осуществляется ка-
тетометром (3) через окно (4), закрытое оптическим стеклом. Вакуумирование
рабочей камеры осуществляется форвакуумным насосом (5). Остаточное давле-
ние в камере измеряется термопарным вакуумметром (6). Образец нагревают
электропечью (7), контролируя температуру с помощью хромель–алюмелевой
термопары (8).

Рис. 1. Рабочая камера водородо-вакуумной установки и ее связь с другими блоками: 1 –
образец; 2 – держатель; 3 – катетометр; 4 – окно; 5 – насос; 6 – вакуумметр; 7 – электропечь;

8 – термопара

Установка имеет следующие характеристики:
- остаточное давление газов в рабочей камере 1.32 Па;
- интервал изменения давлений водорода в рабочей камере 103 − 2× 105 Па;
- интервал изменения температуры образца 20− 170◦ С;
- точность поддержания температуры ±0.5◦ С;
- точность измерения стрелы прогиба образца ±0.2 мм.
В качестве материала для исследования используется палладий в силу спе-

цифики его взаимодействия с водородом (высокая водородопроницаемость, рас-
творимость и диффузионная подвижность) и большого практического значения
этого металла. Палладий, будучи благородным металлом, обеспечивает высокую
активность поверхности образцов. Это в сочетании с использованием в экспери-
ментах диффузионно-очищенного водорода гарантирует надежность результа-
тов и установленных закономерностей.

Для исследования формоизменения палладиевой пластины при ее односто-
роннем и резком насыщении водородом (водородном «ударе») и последующей
дегазации использовали палладий, содержащий следующие примеси (в вес. % ):
Pt – 0.009, Rh – 0.002, Fe – 0.009, Si – 0.001. Из него прокатали фольгу толщиной
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0.28 мм и вырезали образцы в виде пластинок размером 68× 5.5× 0.28 мм. Об-
разцы отжигали в вакууме (10−2 мм рт. ст.) при температуре 600◦ С в течение
одного часа и охлаждали с печью до 20◦ С. Отжиг проводили на специально
выполненной из нержавеющей стали подложке, чтобы исключить возможность
внесения деформации при помещении и извлечении образца из камеры для от-
жига.

Одну сторону образца покрывали медной пленкой способом электролитиче-
ского осаждения меди из раствора серной кислоты и медного купороса. Элек-
тролиз проводили при комнатной температуре, плотность тока равнялась 2–6
А/дм2. Толщина медного покрытия, определенная по массе осажденной меди,
составляла 1.5 мкм. Пленка такой толщины в интервале температур от 150◦

до 100◦ С представляет собой непроницаемую мембрану для водорода. Таким
образом достигалось одностороннее насыщение и дегазация образца.

Эксперименты проводили по следующей схеме. Образец одним концом за-
крепляли горизонтально в рабочей камере водородо-вакуумной установки таким
образом, что ее верхней стороной была та, что покрыта медью. Соответствен-
но, наблюдаемые экспериментально прогибы пластины были направлены вверх.
Смещение свободного конца пластинки под воздействием водорода наблюдали
через окно рабочей камеры. Величину смещения измеряли катетометром с точ-
ностью ±0.2 мм. После монтажа образца в камере для стабилизации его состоя-
ния проводили 3 термоцикла, нагревая и охлаждая образец в вакууме (10−2 мм
рт. ст.) от комнатной температуры до температуры, при которой проводится
серия экспериментов. Стабилизированный таким образом образец нагревали до
заданной температуры, которая в процессе эксперимента затем поддерживалась
постоянной. Выдерживали образец в вакууме при этой температуре в течение 0.5
часа. Далее осуществляли быстрый (за 1–5 с) напуск диффузионно-очищенного
водорода в рабочую камеру до заданного давления. Изобарическая выдержка
при этом давлении длилась от 0.5 до 1 часа, пока образец не приходил в ста-
ционарное состояние. Затем камера дегазировалась, и водород эвакуировался
из образца до достижения стационарного состояния палладиевой пластины (это
достигалось в течение от 0.5 до 1 часа).

2. Результаты эксперимента и их анализ. Ранее [4, 5] эксперименталь-
но установлено, что при односторонних воздействиях водорода различных дав-
лений и при различных температурах (в процессах сорбции и десорбции во-
дорода) Pd-пластина закономерно изменяет свою форму. При этом за полный
цикл (насыщение-дегазация) формоизменение практически полностью обрати-
мо. На первой стадии цикла при насыщении водородом в формоизменении мож-
но условно выделить обратимую и остаточную составляющие. Показано [1], что
наблюдаемые экспериментально закономерности поведения остаточного формо-
изменения на стадии насыщения водородом связаны с торможением водоро-
доупругими напряжениями процесса выравнивания концентрации водорода по
толщине пластины. Необратимые формоизменения при насыщении и их поведе-
ние в зависимости от давления при различных температурах можно объяснить
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остаточными градиентами концентрации, обусловленными синергетическим эф-
фектом влияния водородных концентрационных напряжений на процесс диф-
фузии водорода. Обратимое формоизменение является прямым следствием на-
личия в образце градиентов концентрации водорода.

Интересным проявлением влияния водородных концентрационных напряже-
ний на распределение водорода в пластине являются формоизменения, наблю-
даемые в процессе дегазации образцов в экспериментах, описанных в [1]. На
рисунке 2 представлены временные зависимости стрелы прогиба палладиевой
пластины при ее одностороннем насыщении водородом (кривая 1),а также при
последующей дегазации (кривая 2) при 140◦С и давлении водорода 0,9 атм. Кри-
вая 2 представляет абсолютные значения стрелы прогиба пластины при дегаза-
ции (так как изгиб пластины происходит в обратном направлении, то условно
можно считать ∆y отрицательными).

Рис. 2. Временная зависимость стрелы прогиба пластины при ее одностороннем насыщении
водородом при 140◦ С и давлении водорода 0,9 атм., а также последующей дегазации; кривая

1 соответствует процессу насыщения; кривая 2 соответствует процессу дегазации

И первая, и вторая кривые на рисунке 2 показывают, что максимальные зна-
чения стрелы прогиба (формоизменения) образца наблюдаются в первые момен-
ты насыщения и дегазации. Однако видно, что максимальные значения стрелы
прогиба и ход временной зависимости формоизменения при насыщении пласти-
ны и при дегазации существенно отличаются. Максимальные формоизменения
напрямую связаны с максимальными градиентами концентрации водорода по
толщине пластины. Различия по абсолютной величине значений максимальных
формоизменений при насыщении и дегазации можно объяснить разной скоро-
стью изменения концентрации водорода на входной (не покрытой медью) сто-
роне пластины при насыщении и дегазации. И эти различия увеличиваются с
увеличением давления в камере при постоянной температуре (см. кривые 1 и 2
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на рис. 3). Рост максимального формоизменения с увеличением давления «во-
дородных ударов» при постоянной температуре объясняется возрастанием рас-
творимости водорода в металлах в соответствии с законом Сивертса. При по-
стоянной скорости подачи водорода в камеру с увеличением давления водорода
время, в течение которого в приповерхностном слое металла устанавливается
концентрация водорода, близкая к равновесной растворимости, увеличивается.
Этот фактор и диффузия водорода в металле приводят к уменьшению гради-
ентов концентрации водорода на начальных этапах насыщения образца водоро-
дом. Так как дегазация образца происходит при постоянном вакуумировании
рабочей камеры, то можно предположить, что уже в первые секунды концен-
трация в приповерхностном слое пластины уменьшается до минимальных зна-
чений, что и вызывает появление максимальных градиентов концентрации по
толщине пластины больших, чем при насыщении образца. Скорость диффузии
также пропорциональна градиенту концентрации. Поэтому различаются вре-
менные зависимости стрелы прогиба пластины: при насыщении – меньшие гра-
диенты концентрации и медленнее уменьшается ∆y и при дегазации – большие
градиенты концентрации и быстрее уменьшается ∆y.

Рис. 3. Зависимость максимального формоизменения пластины от давления водорода при
140◦С; кривая 1 – при ее одностороннем насыщении водородом; кривая 2 – при последующей

дегазации

Заключение. Таким образом, наводороженные палладиевые пластины при
их последующей дегазации изменяют свою форму закономерным образом. Уста-
новленные экспериментально закономерности водородоупругого формоизмене-
ния образцов могут быть использованы в технологиях водородной обработки и
для решения прикладных задач водородной энергетики.

1. Goltsov V.A. Hydrogen elasticity effect and its importance in diffusion of concentration inhomo-

33



Ж.Л. Глухова

geneities in metals / V.A Goltsov, Zh.L. Glukhova, A.L. Redko // Int. Journal Hydrogen Energy.
– 1997. – Vol. 22. – P. 179–183.

2. Гольцов В.А. Водородоупругое формоизменение палладиевой пластины. Теоретическое
описание / В.А. Гольцов, Ж.Л. Глухова // Физика металлов и металловедение. – 2001.
– № 3. – C. 21–25.

3. Молчанов И.И. Численные методы решения некоторых задач теории упругости. – К.: На-
укова думка, 1979. – 235 с.

4. Глухова Ж.Л. Явление водородоупругости в системах металл-водород / Ж.Л. Глухова,
В.А. Гольцов // Альтернативная энергетика и экология. – 2014. – № 1. – C. 138–151.

5. Щеголева Т.А. Методика экспериментального исследования формоизменения металличе-
ских пластин / Т.А. Щеголева, Ж.Л. Глухова, А.В. Ветчинов // Журнал теоретической и
прикладной механики. – 2021. – № 3 (76). – C. 25–31.

Zh.L. Glukhova
On the shape changes of hydrogenated palladium plates during their degasation.

This article describes the examples of shape changes of a hydrogenated palladium plate during
its degassing. The experimentally established examples of hydrogen-elastic shape changes of the
samples can be used in hydrogen processing technologies and for solving applied problems in
hydrogen energy.

Keywords: hydrogen in metals, hydrogen elasticity, palladium plate, and shape change.

Статья поступила в редакцию 18.11.2025;
доработана 08.12.2025;
рекомендована к печати 19.12.2025.

34



ISSN 0136-4545 Журнал теоретической и прикладной механики. №4 (93) / 2025.

УДК 539.3
doi:10.24412/0136-4545-2025-4-35-47
EDN:WITKNG

©2025. С.А. Калоеров1, А.В. Сероштанов2, Л.П. Вовк3

ЭЛЕКТРОУПРУГОЕ СОСТОЯНИЕ МНОГОСВЯЗНОЙ
ПЬЕЗОПОЛОСЫ ПРИ ЕЕ ПОПЕРЕЧНОМ ИЗГИБЕ

С использованием комплексных потенциалов теории изгиба электроупругих тонких плит ре-
шена задача об изгибе полосы с произвольными отверстиями и трещинами, в том числе пере-
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методом наименьших квадратов. Описаны результаты численных исследований для полосы
с центральным круговым отверстием, с центральным круговым отверстием и двумя симмет-
ричными краевыми трещинами из него, с двумя круговыми выемками на прямолинейных гра-
ницах полосы. Исследованы закономерности изменения электроупругого состояния полосы в
зависимости от геометрических характеристик отверстий и трещин, их взаиморасположения.
Установлено, что с приближением прямолинейных границ полосы к отверстию или трещине
значения изгибающих моментов в точках перемычки резко возрастают, незначительно изменя-
ясь в других зонах полосы. Большая концентрация моментов наблюдается и в точках прямо-
линейных границ полосы вблизи перемычек. На значения изгибающих моментов значительно
влияет учет пьезосвойств материала, особенно в зонах высокой концентрации изгибающих мо-
ментов, поэтому в этих случаях нельзя ограничиваться решением задачи теории упругости об
изгибе плиты, а нужно решать задачу электроупругости.
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Введение. На протяжении длительного времени тонкие пластинки, изготов-
ленные из пьезоматериалов, активно используются в качестве конструктивных
элементов в различных областях науки и техники [1–4]. Наличие отверстий и
трещин в таких пластинках приводит к тому, что при различных механических
и электрических воздействиях вблизи этих отверстий и трещин могут возникать
высокие концентрации напряжений и индукций, что необходимо учитывать при
проектировании и эксплуатации конструкций. Следовательно, нужно иметь на-
дежные методы определения электроупругого состояния (ЭУС) пластин с раз-
личными отверстиями и трещинами.

Эти вопросы особенно актуальны для случая тонких пластин, эксплуатиру-
емых в условиях их поперечного изгиба и называемых в этом случае тонкими
плитами. К сожалению, до недавнего времени широкомасштабные исследова-
ния ЭУС тонких пьезоплит с отверстиями и трещинами не проводились. Бы-
ли решены лишь отдельные задачи для пьезоплит из материалов простейшей
микроструктуры (с ограничениями на электрические свойства) и геометрии (в
основном сплошных или имеющих круговую границу) [5–9].

Что касается плит с произвольными отверстиями и трещинами, то исследо-
вания по определению их ЭУС начали проводиться лишь в последние десятиле-
тия. И здесь наиболее достоверные результаты получаются при использовании
методов комплексных потенциалов. Эти функции, введённые в работе [10], уже
были использованы при решении различных задач для многосвязной пластинки
[11] и полуплоскости [12].

В данной статье с помощью метода комплексных потенциалов решена зада-
ча электроупругости для полосы с произвольными отверстиями и трещинами,
в том числе выходящими на прямолинейные границы в виде выемов. При этом
граничные условия как на контурах отверстий и трещин, так и на прямолиней-
ных границах удовлетворяются обобщенным методом наименьших квадратов
(ОМНК) [13].

1. Постановка и решение задачи.

Рис. 1

Рассмотрим полосу из электроупругого ма-
териала, занимающую многосвязную область,
ограниченную прямолинейными границами L+

(верхней), L− (нижней) и контурами эллипти-
ческих отверстий Ll (l = 1, L) с полуосями al,
bl (рис. 1). Каждый из эллипсов может перехо-
дить в прямолинейный разрез-трещину, пересе-
кать прямолинейные границы, пересекать дру-
гие контуры. Отнесем плиту к прямоугольной
системе координат Oxy с началом в произволь-
ной точке полосы и осью Ox, параллельной пря-
молинейным границам. Обозначим расстояния
от начала координат до прямолинейных границ
L+, L− соответственно через h+ и h−.
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Выберем локальные системы координат Olxlyl с началами в центрах эллип-
сов Ll и осями Olxl вдоль полуосей al так, что уравнение Ll в локальной системе
координат имеет вид

xl = al cos θ, yl = bl sin θ,

а в системе Oxy будет таким:

x = x0l + xl cosφl − yl sinφl,

y = y0l + xl sinφl + yl cosφl.
(1)

При этом φl – угол между положительными направлениями осей Ox и Olxl,
отсчитываемый от положительного направления Ox против часовой стрелки;
x0l, y0l – координаты начала локальной системы Olxlyl в основной системе Oxy;
θ – угловая переменная параметрического задания эллипса, изменяющийся в
интервале от 0 до 2π.

Будем считать, что прямолинейные границы L+, L− и контуры отверстий не
загружены; на бесконечности полоса изгибается механическим моментом M∞

x и
моментом электрической индукции M∞

dx ; моменты M∞
y , H∞

xy, M∞
dy в силу неза-

груженности прямолинейной границы равны нулю.
Если задачу об определении электроупругого состояния рассматриваемой

полосы решать с использованием комплексных потенциалов электроупругости
[10, 14], то она сводится к нахождению функций W

′
k(zk) (k = 1, 3) обобщенных

комплексных переменных
zk = x+ µky,

где µk – корни известного характеристического уравнения 6-го порядка, из гра-
ничных условий

2Re
3∑

k=1

gikW
′
k(tk) = (c1, c2, c3) (i = 1, 3), (2)

в которых
(g1k, g2k, g3k) = (pk/µk, qk, dyk),

pk, qk, dyk – известные постоянные [10]; ci – комплексные постоянные, разные
для разных эллиптических контуров и прямолинейных границ.

Обозначим заданную область, ограниченную прямолинейными границами и
контурами отверстий через S, верхнюю полуплоскость с границей L+ – через
S+, нижнюю полуплоскость с границей L− – через S−. В областях комплексных
переменных zk (k = 1, 3) области S соответствуют многосвязные полосы Sk с
прямолинейными границами L+

k , L−
k и контурами отверстий Lkl.

ФункцииW ′
k(zk) определены в областях Sk, и на основе общих представлений

комплексных потенциалов [10, 14] представимы в виде

W
′
k(zk) = Γkzk +

L∑
l=1

W
′
kl(zk) +W

′+
k (zk) +W

′−
k (zk), (3)
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где Γk – постоянные, определяемые из решения системы линейных алгебраиче-
ских уравнений

2Re
3∑

k=1

(
pk, qk, rk, dxk, dyk,

1

µk

)
Γk = (−M∞

x , 0, 0,−M∞
dx , 0, 0) ;

rk, dxk – известные постоянные [10], зависящие от коэффициентов деформации
материала и пьезоэлектрических модулей деформации и напряженности и коэф-
фициентов диэлектрической восприимчивости; W ′

kl(zk) – функции голоморфные
вне Lkl; W

′+
k (zk) – функции, голоморфные в нижних полуплоскостях с граница-

ми L+
k ;W

′−
k (zk) – функции, голоморфные в верхних полуплоскостях с границами

L−
k .

Используя конформные отображения внешности единичных кругов |ζkl| ≥ 1
на внешности эллипсов Lkl

zk = zkl +Rkl

(
ζkl +

mkl

ζkl

)
, (4)

где
zkl = x0l + µky0l,

Rkl =
al (cosφl + µk sinφl) + i bl (sinφl − µk cosφl)

2
,

mkl =
al (cosφl + µk sinφl)− i bl (sinφl − µk cosφl)

2Rkl
,

функции W
′
kl(zk), голоморфные вне контуров Lkl, представим рядами Лорана

вида

W
′
kl(zk) =

∞∑
n=1

akln
ζnkl

с неизвестными коэффициентами akln.
Для точек прямолинейных границ L+ и L+

k соответствующих областей имеем

x = t, y = ih+, tk = x+ µky = t+ µkh
+,

Если взять сопряжение от последнего равенства и перейти от получаемого tk к
tk, будем иметь

tk = x+ µky = x+ µkh
+ + (µk − µk)h

+ = tk + (µk − µk)h
+.

Переходя в (4) к сопряженным величинам и заменив в равенствах tk на приве-
денное значение, запишем получаемое равенство в виде

tk = zkl − (µk − µk)h
+ +Rkl

(
ζkl +

mkl

ζkl

)
.
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Переходя от контурного значения tk на значения переменной в области zk и
заменив для удобства переменные ζkl на переменные ζ+kl, получим связь

zk = −(µk − µk)h
+ + zkl +Rkl

(
ζ+kl +

mkl

ζ+kl

)
, (5)

которая, как видно, является конформным отображением эллипса L+
kl, симмет-

ричного эллипсу Lkl области Sk относительно прямолинейной границы L+
k . То-

гда функцию W
′+
k (zk), голоморфную в нижней полуплоскости с границей L+

k ,
можно выбрать в виде функции, голоморфной вне контуров L+

kl, т. е. в виде [12]

W
′+
k (zk) =

L∑
l=1

∞∑
n=1

bkln

(ζ+kl)
n

с неизвестными коэффициентами bkln.
Аналогичным образом получаем представления голоморфных в верхних по-

луплоскостях с границами L−
k функций

W
′−
k (zk) =

L∑
l=1

∞∑
n=1

ckln

(ζ−kl)
n
,

в которых ckln – неизвестные постоянные; ζ−kl – переменные, определяемые из
неявных зависимостей

zk = (µk − µk)h
− + zkl +Rkl

(
ζ−kl +

mkl

ζ−kl

)
. (6)

Окончательно, для комплексных потенциалов (3) будем иметь выражения

W
′
k(zk) = Γkzk +

L∑
l=1

∞∑
n=1

[
aklnφkln(zk) + bklnφ

+
kln(zk) + cklnφ

−
kln(zk)

]
, (7)

где
φkln(zk) = ζ−n

kl , φ+
kln(zk) = (ζ+kl)

−n, φ−
kln(zk) = (ζ−kl)

−n;

ζkl, ζ+kl, ζ
−
kl – функции, вычисляемые из неявных зависимостей (4), (5), (6); akln,

bkln, ckln – неизвестные коэффициенты.
Постоянные akln, bkln, ckln (k = 1, 3; l = 1,L, n = 1, 2, ...) определим из

граничных условий (2) на прямолинейных границах L+, L− и на контурах от-
верстий Ll (l = 1,L), которые после дифференцирования по дугам контуров
имеют вид

2Re

3∑
k=1

gikpδk,sW
′′
k (tkp) = 0, (i = 1, 3; p = 1,L+ 2). (8)
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При этом для точек контуров отверстий δk,s =
dtkp
ds = x

′
+µky

′
√

x′2+y′2
; x′ , y′ – про-

изводные переменных (1) по угловой переменной θ параметрического задания
эллипсов; s – длина дуги контура, обходимого против часовой стрелки; для пря-
молинейных границ L+, L− параметр δk,s = 1.

Граничным условиям (8) будем удовлетворять обобщенным методом наи-
меньших квадратов [13, 15, 16]. Для этого выберем «коллокационные отрезки»
на прямолинейных границах L+ и L−, затем на них и на контурах отверстий и
трещин Ll

(
l = 1,L

)
систему точек Mpm (xpm, ypm)

(
m = 1,Mp; p = 1,L+ 2

)
, в

которых удовлетворим соответствующим граничным условиям, подставив в них
функции (7). Тогда для определения неизвестных постоянных akln, bkln и ckln
получим следующую систему линейных алгебраических уравнений:

2Re
3∑

k=1

L∑
l=1

∞∑
n=1

gikpδk,s

[
φ

′
kln(tkpm)akln + φ

′+
kln(tkpm)bkln + φ

′−
kln(tkpm)ckln

]
=

= −2Re
3∑

k=1

gikpδk,sΓk

(
i = 1, 3; m = 1,Mp; p = 1,L+ 2

)
.

(9)

Кроме уравнений (9), для каждого контура отверстия должны выполняться
уравнения

2Re

3∑
k=1

iakl1 = 0
(
l = 1,L

)
, (10)

следующие из условия однозначности прогиба при полном обходе контуров от-
верстий Ll.

Систему (9), дополненную уравнениями (10), будем решать с использова-
нием сингулярных разложений [17, 18]. После нахождения псевдорешений этой
системы постоянные akln, bkln и ckln, а, следовательно, и функции W ′

k(zk), будут
известными, и по ним можно вычислять основные характеристики ЭУС (момен-
ты механические изгибающие, крутящий, индукций и перерезывающие силы на
основных площадках) [10, 14]. По основным характеристикам можно найти так-
же моменты на произвольных площадках. При этом, если некоторый эллипс Ll

переходит в прямолинейный разрез-трещину, то для его концов можно вычис-
лить также коэффициенты интенсивности моментов (КИМ) [19].

Как частный случай из приведенного решения задачи электроупругости (ЭУ)
следует решение задачи теории упругости (ТУ). Оно получается из приведен-
ного, если в последнем принять равными нулю пьезоэлектрические модули де-
формации и напряженностей gij . Но для проведения численных исследований
в задаче ТУ можно пользоваться программой решения задачи электроупруго-
сти, проводя вычисления для модельного материала с постоянными g

′
ij = λggij

и принимая λg ≤ 10−3.
2. Описание результатов численных исследований. Были проведены

численные исследования для плит из следующих пьезоэлектрических материа-
лов: 1) Селенид кадмия CdSe (материал М1); 2) Пьезокерамика PZT-4 (материал
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М2) [20]. Ненулевые упругие и пьезоэлектрические постоянные этих материалов
приведены в таблице 1.

Таблица 1.
Физико-механические постоянные материалов

Величина
Материалы

ЭМ1 ЭМ2

s11/s0 22,260 10,745

s22/s0 14,984 7,398

s66/s0 47,481 7,637

s12/s0 -6,437 -2,542

g16/g0 109,22 2,054

g21/g0 -4,333 -1,159

g22/g0 8,016 2,458

β11/β0 19,612 0,106

β22/β0 10,612 0,090

so = 10−6МПа−1, g0 = 10−2МКл−1м−2, β0 = 103МН· м2 · МКл−2.

При проведении численных исследований количество членов в бесконечных
рядах (7) для каждого отверстия Lp и «коллокационных точек» Mp на этих
контурах и на «коллокационных отрезках» прямолинейных границ, для кото-
рых составлялись уравнения (9), увеличивалось до тех пор, пока однородные
граничные условия на контурах отверстий и на прямолинейных границах не
удовлетворялись с достаточно высокой степенью точности (модуль абсолютной
погрешности не превышал 10−3). В качестве «коллокационных отрезков» на пря-
молинейных границах выбирались отрезки, за пределами которых влияние от-
верстий и трещин на значения исследуемых величин незначительно. В описывае-
мых ниже случаях для такого удовлетворения граничным условиям необходимо
было в указанных рядах оставлять от 20 до 120 членов, на каждом из конту-
ров отверстий и на «коллокационных отрезках» прямолинейной границы брать
от 100 до 800 «коллокационных точек». При этом в качестве «коллокационных
отрезков» на прямолинейных границах были отрезки длины 2–10 диаметров ос-
новного концентратора моментов с центром в точке, где наиболее существенно
влияние отверстий и трещин.

В таблице 2 для задач ЭУ и ТУ об изгибе моментами M∞
x = mx полосы с

центральным круговым отверстием радиуса a1 (рис. 2) с точностью до множи-
теля mx приведены значения изгибающих моментов в некоторых характерных
точках полосы в зависимости от отношения c1/a1, где c1 – длина перемычки
между контуром отверстия и границами полосы. При этом характерными были
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Рис. 2

точки B(a1, 0), C(0, a1), D+(0, a1 + c1), E+(a1, a1 +
c1). На рисунке 3 для полосы из более пьезоактив-
ного материала М2, для некоторых значений c1/a1
изображены графики распределенияMs/mx по кон-
туру отверстия в зависимости от центрального угла
θ, отсчитываемого от оси Ox против часовой стрел-
ки, а на рисунке 4 изображены графики распреде-
ления моментовMx/mx по некоторому отрезку пря-
молинейной границы L+.

Таблица 2.
Значения изгибающих моментов в некоторых точках полосы
с центральным круговым отверстием в зависимости от c1/a1

Материал Точка Момент Задача
c1/a1

∞ 2 1 0,5 0,1

M1

B My
ЭУ 0,397 0,391 0,389 0,376 0,293
ТУ 0,220 0,220 0,220 0,217 0,196

C Mx
ЭУ 1,760 1,937 2,272 3,061 9,234
ТУ 1,713 1,904 2,257 3,069 9,338

D+ Mx
ЭУ 1,000 1,349 1,805 2,717 9,107
ТУ 1,000 1,313 1,782 2,704 9,098

E+ Mx
ЭУ 1,000 1,198 1,326 1,431 1,272
ТУ 1,000 1,206 1,346 1,458 1,471

M2

B My
ЭУ -0,058 -0,058 -0,058 -0,041 -0,044
ТУ -0,070 -0,078 -0,094 -0,080 -0,060

C Mx
ЭУ 1,421 1,663 2,048 2,936 9,568
ТУ 1,421 1,649 2,036 2,883 9,051

D+ Mx
ЭУ 1,000 1,407 1,874 2,810 9,488
ТУ 1,000 1,393 1,864 2,759 8,971

E+ Mx
ЭУ 1,000 1,183 1,248 1,311 1,296
ТУ 1,000 1,174 1,240 1,288 1,231

Из данных таблицы 2, рисунка 3 и рисунка 4 следует, что влияние прямоли-
нейных границ полосы на электроупругое состояние около отверстия значитель-
но, если отверстие находится на расстоянии менее диаметра отверстия от пря-
молинейных границ (c1/a1 < 2). На значения моментов значительно влияет учет
пьезосвойств материала полосы. Последнее особенно ярко видно из сравнения
значений моментов в точке C, где учет пьезосвойств приводит к значительному
изменению (уменьшению для М1 и увеличению для М2) значений моментов в
этой точке. Поэтому при исследовании напряженного состояния плит из пьезо-
материалов нельзя ограничиваться решением задачи теории упругости, а нужно
решать задачу электроупругости.

В таблице 3 для задач ЭУ и ТУ об изгибе моментами M∞
x = mx полосы из

М2 с круговым отверстием радиуса a1 и двумя симметричными краевыми
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Рис. 3. Графики распределения моментов Ms/mx около контура кругового отверстия
в полосе из материала М2 для некоторых значений c1/a1

Рис. 4. Графики распределения Mx/mx по отрезку прямолинейной границы L+

в полосе с круговым отверстием из материала М2 для некоторых значений c1/a1
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Рис. 5

трещинами длины l2 (рис. 5) с точностью до множи-
теля mx приведены значения изгибающих моментов
и КИМ в некоторых характерных точках в зависи-
мости от отношения l2/a1. При этом ширина поло-
сы равна 4a1, а характерными точками были B(a1, 0),
F (0, a1+ l2), D+(0, 2a1), E+(a1, 2a1). На рисунке 6 для
этого же случая изображены графики распределения
моментов Ms/mx по контуру кругового отверстия в
зависимости от центрального угла θ, отсчитываемо-
го от оси Ox против часовой стрелки, для некоторых
значений l2/a1 в случае задачи ЭУ для полосы из ма-
териала М2.

Таблица 3.
Значения изгибающих моментов и КИМ в некоторых точках полосы

с центральным круговым отверстием и двумя симметричными краевыми
трещинами из него в зависимости от l2/a1

Материал Точка Величина Задача
l2/a1

0,1 0,3 0,5 0,7 0,9

М2

B My
ЭУ -0,089 -0,087 -0,095 -0,094 -0,118
ТУ -0,067 -0,067 -0,067 -0,067 -0,066

F k+1
ЭУ 0,654 1,153 1,587 2,186 3,857
ТУ 0,554 1,021 1,432 2,027 3,654

D+ Mx
ЭУ 1,931 2,162 2,725 4,258 12,312
ТУ 1,912 2,129 2,691 4,190 12,192

E+ Mx
ЭУ 1,265 1,264 1,262 1,268 1,253
ТУ 1,255 1,252 1,247 1,238 1,218

Как видно, с увеличением длин трещин значения основных характеристик
ЭУС в зонах перемычек и КИМ для концов трещин резко растут. При этом
значения Ms/mx около контура отверстия вблизи трещин резко уменьшаются,
практически не изменяясь вдали от трещин.

На рисунке 7 для полосы из материала М2 с двумя симметричными круго-
выми выемами радиуса a1 для некоторых значений отношения c1/a1, где c1 –
длина перемычки между ближайшими точками выемок, изображены графики
распределения моментов Ms/mx по контуру нижнего выема в зависимости от
центрального угла θ, отсчитываемого от оси Ox против часовой стрелки.

Видно, что сближение границ полосы с выемами друг к другу приводит к
существенному росту значений основных характеристик ЭУС в перемычке и
на контурах выемов в зоне перемычки, практически не изменяясь в остальных
зонах.

Выводы. Таким образом, дано решение задачи об изгибе тонкой многосвяз-
ной пьезополосы с произвольно расположенными относительно друг друга и
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Рис. 6. Графики распределения Ms/mx около контура кругового отверстия
с двумя краевыми трещинами в полосе из М2 для некоторых значений l2/a1

Рис. 7. Графики распределения Ms/mx около контура нижнего выема в полосе из М2
с двумя симметричными круговыми выемами для некоторых значений c1/a1
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относительно прямолинейных границ отверстиями и трещинами, в том числе
пересекающими друг друга и прямолинейные границы. Для решения задачи
использованы комплексные потенциалы теории изгиба тонких электроупругих
плит [10, 14], их разложение в ряды Лорана, удовлетворение граничным услови-
ям на контурах отверстий, трещин и на прямолинейных границах обобщенным
методом наименьших квадратов. Описаны результаты численных исследований
для полосы с центральным круговым отверстием, центральным круговым от-
верстием и двумя симметричными краевыми трещинами из него, с двумя круго-
выми выемками на прямолинейных границах полосы. Изучены закономерности
изменения ЭУС плиты в зависимости от ее материала и геометрических характе-
ристик отверстий и трещин. Установлено, что, если отверстия (трещины) распо-
лагаются на значительном расстоянии (более их диаметров) от прямолинейных
границ, то полученные результаты совпадают с аналогичными для бесконечной
многосвязной плиты [11]. Также установлено, что на значения механических
и индукционных изгибающих моментов значительно влияет учет пьезосвойств
материала полосы и им пренебрегать нельзя.
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S.A. Kaloerov, A.V. Seroshtanov, L.P. Vovk
Electroelastic state of a multiply connected piezostrip under its transverse bending.

Using complex potentials of the theory of bending of electroelastic thin plates, the problem of
bending a strip with arbitrary holes and cracks, including intersecting with each others and crossing
rectilinear boundaries, is solved. The complex potentials are represented as Laurent series with
unknown coefficients determined from the boundary conditions on the contours of the holes and
rectilinear boundaries using the generalized least squares method. The results of numerical studies
are described for a strip with a central circular hole, with a central circular hole and two symmetrical
edge cracks from it, and with two circular recesses on the rectilinear boundaries of the strip. The
patterns of change in the electroelastic state of the strip depending on the geometric characteristics
of the holes and cracks, as well as their relative positions, are investigated. It has been established
that as the rectilinear boundaries of the strip approach the hole or crack, the values ??of the bending
moments at the jumper points increase sharply, changing slightly in other zones of the strip. A high
concentration of moments is also observed at the points of the rectilinear boundaries of the strip
near the jumpers. The values of bending moments are significantly affected by taking into account
the piezoelectric properties of the material, especially in areas of high concentration of bending
moments, therefore in these cases one cannot limit oneself to solving the problem of elasticity
theory about the bending of the plate, but must solve the problem of electroelasticity.

Keywords: thin piezo plate, strip, holes, cracks, complex potentials, generalized least squares
method, bending moments intensity factors.
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КОМПЬЮТЕРНАЯ МОДЕЛЬ СОСРЕДОТОЧЕННОГО
ВОЗДЕЙСТВИЯ ПРОДОЛЬНОЙ СИЛЫ В ИЗОТРОПНЫХ
СФЕРИЧЕСКИХ ОБОЛОЧКАХ

Рассмотрена задача о действии сосредоточенной силы в срединной поверхности изотропных
сферических оболочек. Описана методика построения фундаментального решения с использо-
ванием специальной G-функции. Построена компьютерная модель распределения внутренних
силовых факторов в локальной области точки нагружения. Сделан вывод о преимуществах
анализа компьютерных моделей.
Ключевые слова: сферические оболочки, сосредоточенная сила, фундаментальное решение,
преобразование Фурье, компьютерная модель.

Введение. Тематика сосредоточенных и локальных воздействий на тонко-
стенные элементы конструкций является актуальной уже на протяжении поло-
вины столетия. Основные результаты научных исследований в этом направле-
нии в двадцатом столетии изложены в монографиях [1, 2], а итоги подведены в
литературном обзоре [3]. Продолжением этих исследований в начале двадцать
первого века можно считать монографию [4]. Текущие исследования в данном
направлении касаются в основном сосредоточенных и локальных воздействий
в цилиндрических оболочках [5–8]. В одной из последних публикаций [9] рас-
смотрена также цилиндрическая оболочка, жёстко закреплённая на одном конце
и свободная на другом. Определяется напряжённо-деформированное состояние
этой оболочки под действием сосредоточенной силы, направленной вдоль обра-
зующей и приложенной в произвольной точке.

Приведённые выше публикации последних десятилетий касаются преиму-
щественно цилиндрических оболочек. Поэтому результаты исследований, при-
ведённые в данной статье, являются расширением соответствующей тематики.

1. Постановка задачи. Рассмотрим тонкую изотропную сферическую обо-
лочку кривизны k и постоянной толщины h. Срединную поверхность оболочки
отнесем к ортогональной системе координат x, y, z. Модуль упругости матери-
ала оболочки примем E, коэффициент Пуассона ν. Пусть оболочка находится
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asgoltsev@mail.ru.
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под действием сосредоточенного продольного усилия P , приложенного в нача-
ле координат в направлении оси Ox. Задача состоит в определении внутренних
силовых факторов, вызванных указанным сосредоточенным воздействием, и по-
строении компьютерной модели, описывающей распределение усилий и момен-
тов в локальной области сосредоточенного воздействия.

Сосредоточенные воздействия вызывают локальные напряжённые состоя-
ния, расположенные в непосредственной близости от места приложения нагруз-
ки. Решения для таких областей строятся исходя из уравнений напряжённых
состояний с большим показателем изменяемости, совпадающих с уравнениями
теории пологих оболочек [2], которые и примем как разрешающие [10]. Кроме
того, будем считать, что край оболочки находится на значительном удалении от
места приложения сосредоточенной силы и напряжённое состояние затухает на
линии внешней границы. Тогда в постановке задачи граничные условия можно
не учитывать.

Полная система разрешающих уравнений классической теории тонких по-
логих изотропных сферических оболочек включает следующие группы уравне-
ний, представленные в безразмерной системе координат (x1 = x/h, x2 = y/h,
x3 = z/h), определённых с точностью до толщины оболочки.

1. Уравнения равновесия

∂N1

∂x1
+
∂S

∂x2
= −X, ∂S

∂x1
+
∂N2

∂x2
= −Y,

k (N1 +N2)−
∂Q1

∂x1
− ∂Q2

∂x2
= Z, Q1 =

∂M1

∂x1
+
∂H

∂x2
, Q2 =

∂H

∂x1
+
∂M2

∂x2
, (1)

где N1, N2, S – нормальные и касательное мембранные усилия, определённые с
точностью до множителя Eh; M1, M2, H – изгибающие и крутящий моменты,
определённые с точностью до множителя Eh2; Q1, Q2 – перерезывающие силы,
определённые с точностью до множителя Eh; X, Y , Z – проекции внешней
нагрузки на координатные оси, определённые с точностью до множителя E.

2. Уравнения физического закона

N1 =
1

1− ν2
[ε1 + νε2], N2 =

1

1− ν2
[νε1 + ε2], S =

1

2 (1 + ν)
ε12,

M1 =
1

12 (1− ν2)
[κ1 + νκ2], M2 =

1

12 (1− ν2)
[νκ1 + κ2],

H =
1

12 (1 + ν)
κ12, (2)

где ε1, ε2, ε12, κ1, κ2, κ12 – компоненты тангенциальной и изгибной деформации
срединной поверхности.

3. Геометрические соотношения

ε1 =
∂u

∂x1
+ kw, ε2 =

∂v

∂x2
+ kw, ε12 =

∂v

∂x1
+

∂u

∂x2
,
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κ1 = −∂
2w

∂x21
, κ2 = −∂

2w

∂x22
, κ12 = − ∂2w

∂x1∂x2
, (3)

где u, v, w – безразмерные перемещения.
Подставляя геометрические соотношения (3) в уравнения физического зако-

на (2) и внутренние силовые факторы – в уравнения равновесия (1), получим
разрешающую систему для рассматриваемых оболочек в перемещениях.

∂2u

∂x21
+

1− ν

2

∂2u

∂x22
+

1 + ν

2

∂2v

∂x1∂x2
+ k (1 + ν)

∂w

∂x1
= −

(
1− ν2

)
X,

1 + ν

2

∂2u

∂x1∂x2
+

1− ν

2

∂2v

∂x21
+
∂2v

∂x22
+ k (1 + ν)

∂w

∂x2
= −

(
1− ν2

)
Y, (4)

k

{
∂u

∂x1
+

∂v

∂x2

}
+

1

12 (1 + ν)

[
∂4w

∂x41
+ 2

∂4w

∂x21∂x
2
2

+
∂4w

∂x42

]
+ 2k2w = (1− ν)Z.

Сосредоточенное воздействие моделируем с помощью дельта-функции Ди-
рака (δ). Тогда нагрузка для случая действия единичной силы (P = 1) вдоль
оси Ox1 имеет вид

X = δ (x1, x2) , Y = 0, Z = 0. (5)

2. Методика решения. Сформулированную задачу (4), (5) о действии про-
дольной сосредоточенной силы решаем методом интегральных преобразований.
Применим двумерное интегральное преобразование Фурье к разрешающей си-
стеме сферических оболочек (4). В результате получим следующую систему ал-
гебраических уравнений в пространстве трансформант:(

ξ21 +
1− ν

2
ξ22

)
ũ+

1 + ν

2
ξ1ξ2ṽ + k (1 + ν) iξ1w̃ =

(
1− ν2

)
X̃,

1 + ν

2
ξ1ξ2ũ+

(
1− ν

2
ξ21 + ξ22

)
ṽ + k (1 + ν) iξ2w̃ =

(
1− ν2

)
Ỹ , (6)

−k (iξ1ũ+ iξ2ṽ) +

{
1

12 (1 + ν)

(
ξ21 + ξ22

)2
+ 2k2

}
w̃ = (1− ν) Z̃,

где трансформанты перемещений и компонент нагрузки обозначены тильдой.
Решение системы (6) с учётом трансформанты дельта-функции

F {δ (x1, x2)} =
1

2π

+∞∫
−∞

+∞∫
−∞

δ (x1, x2) exp (i (ξ1x1 + ξ2x2)) dx1dx2 =
1

2π
,

описывается следующими формулами:

ũ =
(1 + ν)

π

(
1−ν
2 ξ21 + ξ22

)(
ξ21 + ξ22

)2 +
12
(
1− ν2

)
(1 + ν)2

2π
k2
ξ21
∆
,

50



Компьютерная модель сосредоточенной силы в сферической оболочке

ṽ = −(1 + ν)2

2π

ξ1ξ2(
ξ21 + ξ22

)2 +
12
(
1− ν2

)
(1 + ν)2

2π
k2
ξ1ξ2
∆

, (7)

w̃ =
12
(
1− ν2

)
(1 + ν)

2π
k
iξ1
(
ξ21 + ξ22

)
∆

,

∆ =
(
ξ21 + ξ22

)4
+ k40

(
ξ21 + ξ22

)2
, k40 = 12

(
1− ν2

)
k2.

Подставим полученные решения (7) в уравнения физического закона (2),
выраженные через перемещения с помощью геометрических соотношений (3) в
пространстве трансформант. В результате получим трансформанты внутренних
силовых факторов.

Ñ1 =
1

2π

−iξ1
(
ξ21 + (2 + ν)ξ22

)(
ξ21 + ξ22

)2 +
12
(
1− ν2

)
(1 + ν)

2π
k2
iξ1ξ

2
2

∆
,

Ñ2 =
1

2π

−iξ1
(
νξ21 − ξ22

)(
ξ21 + ξ22

)2 +
12
(
1− ν2

)
(1 + ν)

2π
k2
iξ31
∆
,

S̃ =
1

2π

iξ2
(
νξ21 − ξ22

)(
ξ21 + ξ22

)2 +
12
(
1− ν2

)
(1 + ν)

2π
k2

−iξ21ξ2
∆

, (8)

M̃1 =
(1 + ν)

2π
k
iξ1
(
ξ21 + νξ22

) (
ξ21 + ξ22

)
∆

,

M̃2 =
(1 + ν)

2π
k
iξ1
(
νξ21 + ξ22

) (
ξ21 + ξ22

)
∆

,

H̃ =
(1− ν2)

2π
k
iξ21ξ2

(
ξ21 + ξ22

)
∆

,

Q̃1 =
(1 + ν)

2π
k
ξ21
(
ξ21 + ξ22

)2
∆

, Q̃2 =
(1 + ν)

2π
k
ξ1ξ2

(
ξ21 + ξ22

)2
∆

.

К полученным трансформантам внутренних силовых факторов применим
формулу обращения для двумерного интегрального преобразования Фурье

f (x1, x2) =
1

2π

+∞∫
−∞

+∞∫
−∞

f̃ (ξ1, ξ2) exp (−i (x1ξ1 + x2ξ2)) dξ1dξ2.

В результате получим трансформанты внутренних силовых факторов.
Методику обращения проиллюстрируем на примере мембранного усилия N1.

Выражение для трансформанты Ñ1 из формул (8) рассмотрим отдельно для
плоской части (p) – первое слагаемое, не зависящее от кривизны, и для оболо-
чечной добавки (o) – второе слагаемое, зависящее от кривизны.
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Имеем

Np
1 (x1, x2) =

1

4π2

+∞∫
−∞

+∞∫
−∞

−iξ1
(
ξ21 + (2 + ν)ξ22

)(
ξ21 + ξ22

)2 exp (−i (x1ξ1 + x2ξ2)) dξ1dξ2.

Для вычисления несобственного интеграла разобьём подынтегральную функ-
цию на составляющие выражения f̃1 и f̃2

f̃1 (ξ1, ξ2) =
iξ31(

ξ21 + ξ22
)2 , f̃2 (ξ1, ξ2) =

iξ1ξ
2
2(

ξ21 + ξ22
)2 .

Тогда
Np

1 (x1, x2) = − 1

4π2
[I1 (x1, x2) + (2 + ν)I2 (x1, x2)] .

Для первого интеграла имеем

I1 (x1, x2) =

+∞∫
−∞

+∞∫
−∞

iξ31(
ξ21 + ξ22

)2 exp (−i (x1ξ1 + x2ξ2)) dξ1dξ2.

Используя свойства чётных и нечётных функций, получим

I1 (x1, x2) = 4

+∞∫
0

ξ31 sinx1ξ1dξ1

+∞∫
0

cosx2ξ2(
ξ21 + ξ22

)2dξ2.
Значение внутреннего интеграла получим из табличного интеграла

№ 2.5.6.6 работы [11], и далее используем значения интегралов № 2.50.30.8 и
№ 2.5.31.6 из [11]. Окончательно получим

I1 (x1, x2) = π
x1

x21 + x22
+ πx2

2x1x2
(x21 + x22)

2
,

или в полярной системе координат (r, φ)

I1 (r, φ) = π
cosφ

r

(
1 + 2 sin2 φ

)
.

Для второго интеграла

I2 (x1, x2) =

+∞∫
−∞

+∞∫
−∞

iξ1ξ
2
2(

ξ21 + ξ22
)2 exp (−i (x1ξ1 + x2ξ2)) dξ1dξ2

аналогичным методом, с использованием табличных интегралов № 2.5.9.8 и
№ 2.5.31.7 из работы [11], получим

I2 (r, φ) = π
cosφ

r

(
1− 2 sin2 φ

)
.
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В результате

Np
1 (r, φ) = − 1

8πr
[(5 + ν) cosφ+ (1 + ν) cos 3φ] .

Для оболочечной добавки No
1 имеем

No
1 (x1, x2) =

12(1− ν2)(1 + ν)

4π2
k2

+∞∫
−∞

+∞∫
−∞

iξ1ξ
2
2

∆
exp (−i (x1ξ1 + x2ξ2)) dξ1dξ2.

Для упрощения несобственного интеграла используем свойства чётных и
нечётных функций.

No
1 (x1, x2) =

12(1− ν2)(1 + ν)

π2
k2

+∞∫
0

+∞∫
0

ξ1ξ
2
2

∆
sinx1ξ1 cosx2ξ2dξ1dξ2.

Для проведения дальнейших вычислений и взятия несобственного интеграла
(J) необходимо перейти к полярным системам координат в исходном простран-
стве (r, φ) и в пространстве изображений (ρ, θ).

x1 = r cosφ, x2 = r sinφ, ξ1 = ρ cos θ, ξ2 = ρ sin θ.

Воспользуемся также разложением Якоби [10]

sin(rρ cosφ cos θ) · cos(rρ sinφ sin θ) =

= 2
∞∑
n=0

(−1)nJ2n+1(rρ) cos(2n+ 1)φ cos(2n+ 1)θ,

где J2n+1(rρ) – функция Бесселя первого рода.
В результате получим

J (r, φ) =

π/2∫
0

+∞∫
0

ρ cosφρ2 sin2 φ

ρ4(ρ4 + k40)
×

×2

∞∑
n=0

(−1)nJ2n+1(rρ) cos(2n+ 1)φ cos(2n+ 1)θρdρdθ =

= 2

∞∑
n=0

(−1)nJ2n+1(rρ) cos(2n+ 1)φ

π/2∫
0

cos θ sin2 θ×

×
+∞∫
0

J2n+1(rρ)

ρ4 + k40
cos(2n+ 1)θρdρdθ.
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Учитывая, что
1

ρ4 + k40
= − 1

k20
Im

1

ρ2 + ik20
,

несобственный интеграл преобразуем к виду

+∞∫
0

J2n+1(rρ)

ρ4 + k40
dρ = − 1

k20
Im

+∞∫
0

J2n+1(rρ)

ρ2 + ik20
dρ.

Далее используется интегральное представление специальной
G-функции [10]

Gn,ν(az) = (−1)n
(a
2

)ν−n
+∞∫
0

tν−n+1Jν+n(at)

t2 + z2
dt

(−1 < Re ν < n+ 3/2, a > 0, Re z > 0) ,

которое для значений индексов n = n+ 1 и ν = n приводит к соотношению

+∞∫
0

J2n+1(rρ)

ρ2 + ik20
dρ = (−1)n+1 r

2
Gn+1,n

(√
ik0r

)
.

В итоге,

J (r, φ) =
r

k20

∞∑
n=0

cos(2n+ 1)φ

π/2∫
0

cos θ sin2 θ cos(2n+ 1)θdθ ImGn+1,n

(√
ik0r

)
.

Выражение для оболочечной добавки будет следующим:

No
1 (r, φ) =

1 + ν

π2
k20r

∞∑
n=0

cos(2n+ 1)φ · FN1(n) ImGn+1,n

(√
ik0r

)
,

где

FN1(n) =

π/2∫
0

cos θ sin2 θ cos(2n+ 1)θdθ.

Тогда окончательное выражение для усилия N1 определяется формулой

N1 (r, φ) = − 1

8πr
[(5 + ν) cosφ+ (1 + ν) cos 3φ] +

+
1 + ν

π2
k20r

∞∑
n=0

cos(2n+ 1)φ · FN1(n) ImGn+1,n

(√
ik0r

)
,
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FN1(n) =

π/2∫
0

cos θ sin2 θ cos(2n+ 1)θdθ.

Аналогичная методика обращения используется для нахождения оригиналов
остальных внутренних силовых факторов. Формулы для их вычисления приве-
дены ниже:

N2 (r, φ) =
1

8πr
[(1− 3ν) cosφ+ (1 + ν) cos 3φ] +

+
1 + ν

π2
k20r

∞∑
n=0

cos(2n+ 1)φ · FN2(n) ImGn+1,n

(√
ik0r

)
,

FN2(n) =

π/2∫
0

cos3 θ cos(2n+ 1)θdθ;

S (r, φ) = − 1

8πr
[(3− ν) sinφ+ (1 + ν) sin 3φ]−

−1 + ν

π2
k20r

∞∑
n=0

sin(2n+ 1)φ · FS(n) ImGn+1,n

(√
ik0r

)
,

FS(n) =

π/2∫
0

cos2 θ sin θ sin(2n+ 1)θdθ;

M1 (r, φ) = −1 + ν

π2
kr

∞∑
n=0

cos(2n+ 1)φ · FM1(n)ReGn+1,n

(√
ik0r

)
,

FM1(n) =

π/2∫
0

fm1(θ) cos θ cos(2n+ 1)θdθ, fm1(θ) = cos2θ + νsin2θ;

M2 (r, φ) = −1 + ν

π2
kr

∞∑
n=0

cos(2n+ 1)φ · FM2(n)ReGn+1,n

(√
ik0r

)
,

FM2(n) =

π/2∫
0

fm2(θ) cos θ cos(2n+ 1)θdθ, fm2(θ) = νcos2θ + sin2θ;

H (r, φ) = −1− ν2

π2
kr

∞∑
n=0

sin(2n+ 1)φ · FH(n)ReGn+1,n

(√
ik0r

)
,

FH(n) =

π/2∫
0

cos2 θ sin θ sin(2n+ 1)θdθ;
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Q1 (r, φ) =
1 + ν

π2
k

∞∑
n=0

εn cos 2nφ · FQ1(n)ReGn,n

(√
ik0r

)
,

FQ1(n) =

π/2∫
0

cos2 θ cos 2nθdθ, ε0 = 1, εn = 2 (n ≥ 1);

Q2 (r, φ) =
1 + ν

π2
2k

∞∑
n=1

sin 2nφ · FQ2(n)ReGn,n

(√
ik0r

)
,

FQ2(n) =

π/2∫
0

cos θ sin θ sin 2nθdθ.

Входящая в расчётные формулы специальная G-функция по своим свойствам
подобна функции Макдональда (Kµ(z)). Её можно определить следующим вы-
ражением:

Gn,µ(z) =
(z
2

)µ−n
Kn+µ(z)−

1

2

n∑
k=1

(−1)n+kΓ(µ+ k)

(n− k)!

(
2

z

)2k

(n > 0, Reµ > −1),

где Γ(µ) – гамма-функция.
Все определённые интегралы, входящие в расчётные формулы, находятся

прямыми численными методами. При вычислении внутренних силовых факто-
ров в представленных рядах Фурье достаточно ограничиться десятью членами
ряда.

Расчётные формулы для мембранных усилий содержат два слагаемых. Пер-
вое из них не зависит от кривизны оболочки и соответствует «плоской части»,
которая описывает решение для пластин. Второе слагаемое, содержащее кривиз-
ну оболочки, соответствует «оболочечной добавке», которая отражает влияние
изогнутой поверхности оболочки на решение.

Расчётные формулы для моментов и перерезывающих сил представлены
лишь оболочечной добавкой. Это соответствует общим положениям механики
пластин, поскольку плоское напряжённое состояние описывается только мем-
бранными усилиями.

3. Результаты численных исследований. Компьютерная модель сосре-
доточенного воздействия продольной силы в сферических оболочках построе-
на с помощью системы компьютерной математики Maple. С помощью команды
PLOT3D и графической структуры трёхмерной графики типа GRID осуществ-
лена визуализация распределения рассматриваемых величин в локальной об-
ласти сосредоточенного воздействия. На рисунках 1–8 показано распределение
усилий (N1, N2, S), моментов (M1, M2, H) и перерезывающих сил (Q1, Q2) со-
ответственно. Значения величин даны в относительных единицах, умноженных
на 100; X и Y – безразмерные координаты.
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Рис. 1 Рис. 2

Рис. 3 Рис. 4

Полученные картины распределения внутренних силовых факторов нагляд-
но демонстрируют локальный характер напряжённого состояния в случае сосре-
доточенного воздействия. На границах рассматриваемой области мембранные
усилия практически исчезают, а моменты и перерезывающие силы имеют яв-
ную тенденцию к уменьшению своих значений. При этом абсолютные значения
моментов и перерезывающих сил на два порядка меньше абсолютных значений
мембранных усилий, что обусловлено характером нагрузки. С увеличением зо-
ны визуализации локальный характер напряжённого состояния проявится более
явственно.

Компьютерная модель явно демонстрирует особенность r−1 для мембранных
усилий и особенность ln r для перерезывающего усилия Q1 в месте сосредото-
ченного воздействия.
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Рис. 5 Рис. 6

Рис. 7 Рис. 8

Выводы.
Предложенная методика построения компьютерных моделей для тонкостен-

ных элементов конструкций при сосредоточенных воздействиях позволяет про-
водить комплексные исследования по распределению напряжённого состояния
в зоне локального нагружения. Визуализация характера изменений внутренних
силовых факторов при удалении от места нагрузки позволяет определить те
направления, в которых оценку возможных напряжений необходимо проводить
более тщательно и точно. Особенно это актуально при использовании тонкостен-
ных элементов конструкций из композиционных материалов, расчёт которых
необходимо проводить с учётом анизотропных свойств материала.

Исследование проводилось в ФГБОУ ВО ДонГУ в рамках государственного
задания (№ госрегистрации 124012400353-3).
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ПОПЕРЕЧНЫЙ ИЗГИБ ЭЛЕКТРОУПРУГОЙ
КУСОЧНО-ОДНОРОДНОЙ ТОНКОЙ ПЬЕЗОПЛИТЫ

С использованием комплексных потенциалов теории изгиба электроупругих тонких плит ре-
шена задача об изгибе пьезоплиты с эллиптическими включениями из других материалов.
При этом функции, голоморфные вне отверстий, представлены рядами Лорана; функции, го-
ломорфные во включениях, – рядами по полиномам Фабера. При удовлетворении граничным
условиям на контурах контактов плиты и включений обобщенным методом наименьших квад-
ратов определение неизвестных коэффициентов рядов сведено к переопределенной системе
линейных алгебраических уравнений, решаемой методом сингулярного разложения. Описаны
результаты численных исследований для плиты с двумя круговыми или линейными вклю-
чениями. Исследованы закономерности влияния физико-механических свойств материалов и
геометрических характеристик включений на значения изгибающих моментов и коэффициен-
тов интенсивности моментов для концов линейных включений.
Ключевые слова: пьезоплита, пьезовключения, комплексные потенциалы, обобщенный ме-
тод наименьших квадратов, изгибающие моменты.

Введение. Элементы различных конструкций современной техники изго-
тавливаются из пьезоматериалов [1–7]. Часто такие элементы, представляющие
собой изгибаемые тонкие плиты, имеют отверстия, трещины и инородные вклю-
чения. При этом вблизи контуров этих отверстий, трещин и включений воз-
никают высокие концентрации изгибающих механических и индукционных мо-
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ментов, что может приводить к разрушению этих элементов и подлежит учету
при проектировании соответствующих конструкций. Соответственно, для этого
нужно иметь надежные методы определения электроупругого состояния (ЭУС)
многосвязных тонких кусочно-однородных плит.

Как показывают исследования, наиболее достоверные результаты по опреде-
лению ЭУС многосвязных плит в рамках прикладной модели электроупругого
изгиба получаются при решении задач с использованием комплексных потенци-
алов электроупругости [8].

В данной работе с использованием потенциалов обобщенных комплексных
переменных построено общее решение задачи об изгибе бесконечной пьезоплиты
с произвольными включениями. При этом комплексные потенциалы для беско-
нечной плиты представлены рядами Лорана, для включений – рядами по поли-
номам Фабера с неизвестными коэффициентами, определяемыми из граничных
условий обобщенным методом наименьших квадратов (ОМНК) [9]. Для плиты
с двумя круговыми или линейными включениями проведены широкомасштаб-
ные численные исследования распределений изгибающих моментов и изменения
коэффициентов интенсивности моментов (КИМ). Установлен ряд закономерно-
стей влияния на ЭУС плит геометрических характеристик включений, их места
расположения, физико-механических свойств материалов плиты и включений.

1. Постановка и метод решения задачи. Рассмотрим отнесенную к пря-
моугольной системе координат Oxy электроупругую тонкую плиту, ослаблен-
ную эллиптическими отверстиями с кон-

Рис. 1. Многосвязная плита с включениями

турами Ll (l = 1, L) и полуосями al,
bl (рис. 1), в которые вложены вклю-
чения из других пьезоматериалов, на-
ходящиеся с плитой в условиях иде-
ального электроупругого контакта.
Каждое из включений может перехо-
дить в линейное (например, при
bl = 0). Обозначим бесконечную мно-
госвязную область, ограниченную кон-
турами Ll, через S; области включений – через Sl. Введем локальные системы
координат Olxlyl (l = 1, L) с началами в центрах эллипсов Ll и осями Olxl вдоль
полуосей al так, что в этих системах и в основной системе координат уравнения
эллипсов имеют вид

xl = al cos θ, yl = bl sin θ; (1)

x = x0l + xl cosφl − yl sinφl, y = y0l + xl sinφl + yl cosφl, (2)

где φl – угол между положительными направлениями осей Ox и Olxl, отсчиты-
ваемый от положительного направления Ox против часовой стрелки; x0l, y0l –
координаты начала локальной системы Olxlyl в основной системе Oxy; θ – пара-
метр, изменяющийся в интервале от 0 до 2π. На бесконечности плита находится
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под действием механических изгибающих моментов M∞
x , M∞

y , H∞
xy и моментов

индукций M∞
dx , M∞

dy или напряженностей H∞
dx, H

∞
dy .

Если для решения задачи об определении электроупругого состояния рас-
сматриваемой пьезоплиты использовать комплексные потенциалы теории изги-
ба тонких электроупругих плит [8], то оно сводится к нахождению из соответ-
ствующих граничных условий комплексных потенциалов W ′

k(zk) (k = 1, 3) для
бесконечной плиты и комплексных потенциалов W

′(l)
k (z

(l)
k ) (k = 1, 3) для каждо-

го включения.
Комплексные потенциалы W

′
k(zk) являются функциями обобщенных ком-

плексных переменных
zk = x+ µky, (3)

где µk - корни характеристического уравнения

l4s(µ)l2β(µ)− l23g(µ) = 0; (4)

lij(µ) – полиномы вида

l4s(µ) = −
(
D22µ

4 + 4D26µ
3 + 2(D12 + 2D66)µ

2 + 4D66µ+D11

)
,

l3g(µ) = Cg22µ
3 + (Cg12 + 2Cg26)µ

2 + (Cg21 + 2Cg16)µ+ Cg11,

l2β(µ) = Cβ22µ
2 + 2Cβ12µ+ Cβ11;

Dij = bijD0 – упругие жесткости плиты; Cgij = cgijD0, Cβij = cβijD0 – элек-
трические жесткости плиты; D0 = 2

3h
3; h – полутолщина плиты; bij , cgij , cβij –

элементы обратной матрицы
b11 b12 b16 cg11 cg21
b12 b22 b26 cg12 cg22
b16 b26 b66 cg16 cg26

−cg11 −cg12 −cg16 cβ11 cβ12
−cg21 −cg22 −cg26 cβ12 cβ22

 =


s11 s12 s16 g11 g21
s12 s22 s26 g12 g22
s16 s26 s66 g16 g26
−g11 −g12 −g16 β11 β12
−g21 −g22 −g26 β12 β22


−1

;

sij – коэффициенты деформации материала, измеренные при постоянных ин-
дукциях электрического поля; gij – пьезоэлектрические модули деформации и
напряженностей, измеренные при постоянных напряжениях и индукциях; βij –
коэффициенты диэлектрической восприимчивости, измеренные при постоянных
напряжениях [8].

Комплексные потенциалы W
′(l)
k (z

(l)
k ) (k = 1, 3) для каждого включения S(l)

являются функциями обобщенных комплексных переменных

z
(l)
k = x+ µ

(l)
k y, (5)

где µ(l)k – корни характеристического уравнения, получаемого из уравнения (4)
заменой всех величин на аналогичные величины с индексом (l) вверху.
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Функции W
′
k(zk) определены в областях Sk, получаемых из области S аф-

финными преобразованиями (3) и ограниченных контурами Lkl, соответствую-
щими контурам Ll при этих преобразованиях, и в общем случае многосвязной
плиты они могут быть представлены в виде [8, 9]

W
′
k(zk) = a00 + Γkzk +

L∑
l=1

∞∑
n=1

akln
ζnkl

, (6)

где Γk – известные постоянные, определяемые по значениям моментов на беско-
нечности [8]; ζkl – переменные, получаемые из конформных отображений внеш-
ности единичных кругов

∣∣ζkl∣∣ ≥ 1 на внешности контуров Lkl [10]

zk = zkl0 +Rkl

(
ζkl +

mkl

ζkl

)
; (7)

zkl0 = x0l + µky0l,

Rkl =
al(cosφl + µk sinφl) + ibl(sinφl − µk cosφl)

2
,

mkl =
al(cosφl + µk sinφl)− ibl(sinφl − µk cosφl)

2Rkl
; (8)

akln – неизвестные коэффициенты рядов, которые определим из граничных усло-
вий на контурах контакта плиты с включениями.

Функции W
′(l)
k (z

(l)
k ) голоморфны в конечных областях S

(l)
k , получаемых из

областей S(l) аффинными преобразованиями (5), и они могут быть представлены
рядами по полиномам Фабера для этих областей

W
′(l)
k (z

(l)
k ) =

∞∑
n=0

a
(l)
knP

(l)
kn (z

(l)
k ), (9)

где P (l)
kn (z

(l)
k ) – полиномы Фабера для эллипса L(l)

k , имеющие вид [11]

P
(l)
k0 = 1, P

(l)
kn =

(
ζ
(l)
k

)n
+

(
m

(l)
k

)n(
ζ
(l)
k

)n ;

ζ
(l)
k – переменные, вводимые при конформных отображениях внешности единич-

ных кругов
∣∣∣ζ(l)k

∣∣∣ ≥ 1 на внешности контуров L(l)
k на базе использования формул

z
(l)
k = z

(l)
k0 +R

(l)
k

(
ζ
(l)
k +

m
(l)
k

ζ
(l)
k

)
; (10)

z
(l)
k0 = x0l + µ

(l)
k y0l,
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R
(l)
k =

al(cosφl + µ
(l)
k sinφl) + ibl(sinφl − µ

(l)
k cosφl)

2
,

m
(l)
k =

al(cosφl + µ
(l)
k sinφl)− ibl(sinφl − µ

(l)
k cosφl)

2R
(l)
k

;

µ
(l)
k – корни уравнения (4) для включения S(l).

Поскольку полиномы Фабера P (l)
kn (z

(l)
k ) можно представить рядами по степе-

ням z(l)k −z(l)k0 [11], то и функцииW
′(l)
k (z

(l)
k ) можно представить и в виде степенных

рядов

W
′(l)
k (z

(l)
k ) =

∞∑
n=0

a
(l)
kn

(
z
(l)
k − z

(l)
k0

)n
, (11)

где a
(l)
kn – неизвестные постоянные, которые, как и akln, будем определять из

граничных условий на контурах контактов плиты S и включений S(l).
На контурах включений, где имеет место идеальный контакт плиты с вклю-

чениями, граничные условия для определения комплексных потенциалов имеют
вид [8]

2Re
3∑

k=1

(
giklW

′
k(zk)− g

(l)
ik W

′(l)
k

(
z
(l)
k

))
= fil(t) (i = 1, 6), (12)

где
g1kl =

pk
µk
, g2kl = qk, g3kl = 1, (13)

g4kl = µk, g5kl = dyk, g6kl = νk;

g
(l)
1k =

p
(l)
k

µ
(l)
k

, g
(l)
2k = q

(l)
k , g

(l)
3k = 1,

g
(l)
4k = µ

(l)
k , g

(l)
5k = d

(l)
yk, g

(l)
6k = ν

(l)
k ,

f1l = −clx+ c1l, f2l = cly + c2l, (14)

f3l = f4l = 0, fjl = cjl, j = 5, 6;

pk, qk, dyk, νk – известные постоянные [8]; cl – вещественные постоянные, причем,
все величины со значком (l) вверху относятся к включению S(l) и получаются
по приведенным выше формулам для плиты заменой соответствующих величин
без значка на величины со значком (l).

Для многосвязных областей граничным условиям удобнее удовлетворять в
дифференциальной форме, которая не будет содержать аддитивные постоянные,
входящие в обычные граничные условия. Последние условия, полученные из
условий (12) их дифференцированием по дуге контура, имеют вид

2Re
3∑

k=1

[
giklδk,sW

′′
k (zk)− g

(l)
ik δ

(l)
k,sW

′′(l)
k

(
z
(l)
k

)]
=
dfil(t)

ds
(i = 1, 6), (15)
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где

W
′′
k (zk) =

L∑
l=1

∞∑
n=1

ϕ
′
kln(zk)akln, W

′′(l)
k

(
z
(l)
k

)
=

∞∑
n=1

ϕ
′(l)
kn

(
z
(l)
k

)
a
(l)
kn; (16)

δk,s =
dzk
ds

, δ
(l)
k,s =

dz
(l)
k

ds
,

ϕ
′
kln(zk) = − n

ζn−1
kl (ζ2kl −mkl)

, ϕ
′(l)
kn

(
z
(l)
k

)
= n

(
z
(l)
k − z

(l)
k0

)n−1
(l = 1,L).

Граничным условиям (15) будем удовлетворять обобщенным методом наи-
меньших квадратов [9, 12, 13]. Для этого выберем на каждом из контуров Lp

систему точек Mpm(xpm, ypm) (p = 1,L;m = 1,Mp), в которых удовлетворим
соответствующим граничным условиям. Подставляя функции (16) в граничные
условия (15) в точках Mpm(xpm, ypm), для определения неизвестных постоянных
akln и a(l)kn получаем систему линейных алгебраических уравнений вида

2Re
[ 3∑
k=1

L∑
l=1

∞∑
n=1

gikpδk,sϕ
′
kln(tkpm)akln −

3∑
k=1

∞∑
n=1

g
(l)
ik δ

(l)
k,sϕ

′(l)
kn

(
t
(p)
km

)
a
(l)
kn

]
=

=
dfip(tpm)

ds
− 2Re

4∑
k=1

gikδk,sΓk (i = 1, 6; p = 1,L;m = 1,Mp). (17)

Кроме уравнений (17), для каждого контура отверстия должны выполняться
уравнения

2Re
3∑

k=1

iakp1 = 0 (p = 1,L), (18)

следующие из требования однозначности прогиба при полном обходе каждого
из контуров Lp.

Систему (17), дополненную уравнениями (18), будем решать методом син-
гулярных разложений [14, 15]. После нахождения псевдорешений этой системы
функции W

′
k(zk) и W

′(l)
k

(
z
(l)
k

)
будут известны, и по ним можно вычислять ос-

новные характеристики ЭУС (механические изгибающие и крутящий моменты,
моменты индукций электрического поля, перерезывающие силы) [8]. Если неко-
торый эллипс Ll переходит в прямолинейное включение, то для его концов мож-
но вычислить также коэффициенты интенсивности моментов (КИМ) k±1M и k±2M
по известным формулам

k±1M = 2Re
[
pk sin

2 φl + qk cos
2 φl − 2rk cosφl sinφl

]
Mk,

k±2M = 2Re
[
(qk − pk) cosφl sinφl + rk(cos

2 φl − sin2 φl)
]
Mk,
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в которых

Mk = ±
√
al

2Rkl

∞∑
n=1

(±1)nnakln,

причем «+» и «−» у КИМ в локальной системе координат Olxlyl относятся к
правому и левому концам трещины соответственно.

Как частный случай из приведенного решения задачи электроупругости (ЭУ)
следует решение задачи теории упругости (ТУ). При проведении численных ис-
следований результаты для этой задачи можно получить по общей программе
решения задачи ЭУ, проводя вычисления для модельного материала с постоян-
ными g

′
ij = λggij , ν

′
ij = λgνij и полагая λg = 1 для задачи ЭУ, λg ≤ 10−3 для

задачи ТУ.
2. Описание результатов численных исследований. Были проведе-

ны численные исследования для плит из материалов: 1) композит на основе
BaTiO3−CaFe2O4 (материал М1) [16, 17]; 2) композит, упругие, пьезоэлектри-
ческие и электрические постоянные которого соответствуют селениду кадмия
CdSe (материал М2) [18]. При проведении расчетов упругие свойства материала
каждого включения связывались со свойствами материала бесконечной плиты
соотношениями s(l)ij = λ

(l)
s sij , где λ(l)s – параметры пропорциональности характе-

ристик соответствующих материалов в бесконечной плите (область S) и включе-
ниях (области S(l)). Ввиду того, что на значения моментов в бесконечной плите
пьезосвойства включений влияют незначительно, при проведении расчетов эти
свойства включений не учитывались, т.е. считалось, что λ(l)g = λ

(l)
p = λ

(l)
gp = 0.

В таблице 1 для изгиба моментами M∞
y =

Рис. 2. Схема задачи с двумя кру-
говыми включениями

= my бесконечной плиты из «существенно анизо-
тропного» материала М2 и слабо пьезоактивно-
го материала М1 с двумя одинаковыми круговы-
ми упругими (не обладающими пьезосвойствами)
включениями радиуса a1 (b1 = a1, b2 = a2 = a1)
(рис. 2), с точностью до множителя my, в зави-
симости от c/a1, где c - расстояние между вклю-
чениями, от параметра механической жесткости
включений λ

(1)
s и центрального угла θ контура

L1, отсчитываемого от положительного направ-
ления оси Ox против часовой стрелки, приведены
значения изгибающих моментов Ms в точках контакта плиты с левым включе-
нием, на площадках, перпендикулярных к контуру. Значения λ

(1)
s , равные 0 и

∞, относятся к случаям плиты с абсолютно жесткими включениями и абсолют-
но мягкими включениями (отверстиями). На рисунке 3 для некоторых значе-
ний c/a1 изображены графики распределения этих моментов около контура L1

в плите из материала М2. Сплошные линии относятся к случаю c/a1 = 0, 1;
штриховые – к случаю c/a1 = ∞.

Из таблицы 1, рисунка 3 и других полученных результатов следует, что вли-
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Таблица 1. Значения Ms/my в плите около контура левого включения

c/a1 λ
(1)
s

θ, рад.
0 π/6 π/3 π/2 π 0 π/6 π/3 π/2

Задача ЭМУ Задача ТУ
Материал М2

∞ 0,0 –0,852 -0,322 0,963 0,988 -0,852 -0,849 -0,218 0,679 1,027
0,1 -0,196 0,044 0,639 0,540 -0,196 -0,170 0,106 0,447 0,559
0,5 0,647 0,532 0,314 0,089 0,647 0,669 0,546 0,253 0,094
2,0 1,316 0,956 0,247 -0,005 1,315 1,280 0,945 0,302 -0,013
10,0 1,825 1,306 0,331 0,112 1,825 1,696 1,272 0,469 0,078
∞ 2,063 1,474 0,394 0,199 2,063 1,876 1,424 0,565 0,146

1,00 0,0 -0,629 -0,508 0,628 0,876 -0,830 -0,649 -0,382 0,439 0,907
0,1 -0,183 -0,083 0,476 0,484 -0,207 -0,185 -0,004 0,344 0,500
10,0 2,199 1,440 0,320 0,107 1,930 2,098 1,406 0,438 0,075
∞ 2,610 1,662 0,371 0,189 2,208 2,454 1,617 0,519 0,138

0,10 0,0 -1,630 -0,584 0,554 0,869 -0,894 -1,627 -0,449 0,386 0,899
0,1 -0,604 -0,191 0,409 0,465 -0,237 -0,575 -0,105 0,299 0,480
10,0 4,081 1,442 0,269 0,127 2,055 3,816 1,355 0,320 0,091
∞ 6,714 1,499 0,254 0,204 2,410 6,146 1,386 0,281 0,148

0,01 0,0 -5,557 -0,278 0,616 0,876 -0,937 -5,690 -0,224 0,435 0,907
0,1 -1,331 -0,128 0,415 0,462 -0,247 -1,267 -0,078 0,300 0,477
0,5 0,390 0,443 0,275 0,071 0,614 0,459 0,462 0,240 0,076
2,0 1,868 1,022 0,245 0,006 1,379 1,746 1,002 0,274 -0,002
10,0 6,106 1,253 0,236 0,132 2,088 5,453 1,192 0,279 0,096
∞ 20,727 0,630 0,136 0,219 2,504 18,601 0,570 0,129 0,152

Материал М1
∞ 0 -0,774 -0,266 0,798 1,207 -0,774 -0,756 -0,262 0,783 1,207

0,1 -0,134 0,078 0,520 0,663 -0,134 -0,122 0,080 0,511 0,663
0,5 0,678 0,543 0,269 0,110 0,678 0,681 0,543 0,266 0,110
2 1,231 0,908 0,279 -0,010 1,231 1,268 0,942 0,298 -0,008
10 1,642 1,231 0,465 0,138 1,642 1,664 1,255 0,472 0,120
∞ 1,826 1,384 0,579 0,247 1,826 1,835 1,399 0,577 0,215

1,00 0,0 -0,623 -0,361 0,410 1,052 -0,730 -0,667 -0,459 0,478 1,056
0,1 -0,216 -0,066 0,354 0,584 -0,134 -0,195 -0,054 0,380 0,591
10,0 2,534 1,759 0,596 0,041 2,077 2,407 1,579 0,521 0,203
∞ 2,534 1,759 0,596 0,041 2,077 2,407 1,579 0,521 0,203

0,10 0 -0,425 -0,225 -0,181 1,050 -0,509 -0,194 -0,072 -0,250 0,587
0,1 -0,188 -0,011 0,047 0,573 -0,055 0,019 0,092 -0,130 0,492
10 6,332 1,403 0,173 0,012 2,254 6,018 1,332 0,313 0,218
∞ 6,340 1,551 0,282 0,104 2,251 6,022 1,339 0,307 0,218
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Рис. 3. Графики распределения моментов Ms около контура L1 при c/a1 = 0, 1 (сплошные
линии) и c/a1 = ∞ (штриховые линии)

яние одного включения на ЭУС около другого значительно, если расстояние
между включениями менее диаметров включений (c/a1 ≤ 2); с уменьшением
этого расстояния между включениями значения моментов Ms в плите около
контуров включений резко изменяются вблизи точек перемычки и несколько
меньше – в зонах противоположных перемычке

(
возрастают при λ

(1)
s > 1 (при

E
(1)
1 < E1) и уменьшаются при λ

(1)
s < 1 (при E

(1)
1 > E1)

)
. При этом на значе-

ния моментов в этой зоне существенно влияет значение параметра жесткости
λ
(1)
s : с увеличением значения λ(1)s (с уменьшением жесткости включений) значе-

ния моментов Ms резко возрастают. Так, если c/a1 = 0, 01, то в точке контура,
соответствующей θ = 0, при изменении λ

(1)
s от 0 (абсолютно жесткие включе-

ния) до ∞ (неподкрепленные отверстия) значения моментов растут от −5, 557 до
20, 727. Вдали от перемычки эти значения изменяются незначительно. Значения
изгибающих моментов в плите из «существенно анизотропного» материала М2
значительно больше, чем в плите из «близкого к изотропному» материала М1.
На изгибающие моменты в плите значительно влияют пьезосвойства; порой зна-
чения моментов с учетом пьезосвойств (задача ЭУ) в 2 и более раз отличаются
от их значений без учета пьезосвойств (задача ТУ).

С уменьшением отношения полуосей эллиптических отверстий bl/al значения
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моментов Ms в окрестности концов малых полуосей эллипсов bl значительно
уменьшаются, но они резко растут в окрестности концов больших полуосей al,
стремясь к бесконечности, и при bl/al ≤ 10−3 можно говорить о КИМ для концов
линейных включений.

В таблице 2 для плиты из материала М2

Рис. 4. Схема задачи с двумя линей-
ными включениями

с двумя одинаковыми упругими линейными
включениями (не обладающими пьезосвойства-
ми) длины 2a1 (2a2 = 2a1)(рис. 4) в зависимо-
сти от c/a1, где c – расстояние между вклю-
чениями, и параметра механической жестко-
сти включений λ(1)s даны значения КИМ k±1 (в
данном случае k±2 = 0). Значения λ(1)s , равные
0 и ∞, относятся к случаям абсолютно жест-
ких включений и трещин соответственно. Для
случаев, когда параметр λ

(1)
s равен 0, 1 и 10, значения k+1 (КИН для правого

конца трещины) для всех c/a1 получаются такими же, как и k−1 , поэтому они в
таблице 2 не приведены.

Таблица 2. Значения КИМ для концов левого линейного включения
в плите из материала М2 с двумя линейными включениями

λ
(1)
s КИМ

c/a1
∞ 2 1 0,5 0,1 0,01

0
k−1 -0,549 -0,564 -0,577 -0,593 -0,632 -0,672
k+1 -0,549 -0,575 -0,611 -0,675 -0,985 -2,103

10−3 k−1 -0,160 -0,161 -0,162 -0,163 -0,164 -0,165
k+1 -0,160 -0,163 -0,166 -0,173 -0,207 -0,322

0,1 k−1 -0,003 -0,003 -0,003 -0,003 -0,003 -0,003
10 k−1 0,007 0,007 0,007 0,007 0,007 0,007

103
k−1 0,437 0,441 0,444 0,447 0,453 0,456
k+1 0,437 0,446 0,459 0,484 0,602 1,003

∞ k−1 0,998 1,026 1,050 1,079 1,149 1,221
k+1 0,998 1,046 1,110 1,226 1,791 3,838

Как видно из таблицы 2, если механическая жесткость включений мень-
ше жесткости плиты (λ(1)s > 1), то КИМ положительны, и в малой окрестности
концов линейных включений при положительных толщинных координатах z на-
пряжения положительны (происходит растяжение); если же механическая жест-
кость включений меньше жесткости плиты (λ(1)s < 1), то КИМ отрицательны, и
в малой окрестности концов включений при положительных толщинных коор-
динатах z напряжения в плите отрицательны (происходит сжатие). Если мате-
риалы плиты и включений по механическим свойствам одинаковы (λ(1)s = 1), то,
как и следовало ожидать, КИМ равны нулю и напряженное состояние в плите
такое же, как в плите без включения. При сближении друг с другом включений
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из более жесткого материала, чем материал плиты (λ(1)s < 1) значения КИМ
несколько уменьшаются; при сближении друг с другом включений из выражен-
но мягкого материала, чем материал плиты (λ(1)s >> 1), значения КИМ резко
растут, особенно для ближайших друг к другу концов включений (трещин).

Заключение. Таким образом, с использованием комплексных потенциалов
теории изгиба тонких пьезоплит [8] решена задача об изгибе плиты с включе-
ниями из других материалов. При решении задачи голоморфные вне областей
включений функции после соответствующих конформных отображений разла-
гаются в ряды Лорана, функции, голоморфные в эллиптических областях, –
в ряды по полиномам Фабера. Определение неизвестных коэффициентов рядов
из граничных условий реализуется с применением обобщенного метода наимень-
ших квадратов [9, 12, 13] и сведено к решению переопределенной системы ли-
нейных алгебраических уравнекний, решаемой методом сингулярных разложе-
ний [14, 15]. Численные исследования проведены для плиты с двумя круговыми
или линейными включениями. Установлены закономерности изменения элек-
троупругого состояния плиты в зависимости от физико-механических свойств
материалов плиты и включений, геометрических характеристик включений.
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Transverse bending of an electroelastic piecewise homogeneous thin piezoplite.

Using the complex potentials of the theory of bending of electroelastic thin plates, the problem
of bending piezoplites with elliptical inclusions of other materials has been solved. In this case,
functions that are holomorphic outside the holes are represented by Laurent series, and functions
that are holomorphic in inclusions are represented by Faber polynomial series. By satisfying the
boundary conditions on the contact contours of the plate and inclusions using the generalized least
squares method, the determination of unknown coefficients of the series is reduced to an overridden
system of linear algebraic equations solved by the singular value decomposition method. The results
of numerical studies for a plate with two circular or linear inclusions are described. The patterns
of the influence of the physico-mechanical properties of materials and geometric characteristics of
inclusions on the values of bending moments and moment intensity coefficients for the ends of linear
inclusions are investigated.

Keywords: piezoplite, piezo inclusions, complex potentials, generalized least squares method, bending
moments.
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ВЛИЯНИЕ ДЕФЕКТОВ ТИПА ТРЕЩИН НА
ТЕРМОЭЛЕКТРОМАГНИТОУПРУГОЕ СОСТОЯНИЕ
ПЛАСТИНОК ИЗ ПЬЕЗОМАТЕРИАЛОВ. I

В данной работе рассмотрено влияние краевых трещин, выходящих из контуров пластинки,
на термоэлектромагнитоупругое состояние пластинки около этих контуров при действии ли-
нейного потока тепла. Пластинка полагалась изготовленной из пьезоматериала. С помощью
численных исследований установлены закономерности влияния конфигурации отверстий и
трещин, их размеров, а также температурных граничных условий на их контурах на значения
температурных напряжений в окрестности контуров отверстий.
Ключевые слова: многосвязная пластинки, трещины, линейный поток тепла,
температурные напряжения, коэффициенты интенсивности напряжений, комплексные по-
тенциалы.

Введение. Во многих областях науки и техники в качестве конструкцион-
ных элементов широко применяются пластинки, изготовленные из пьезомате-
риалов. По технологическим или эксплуатационным причинам эти пластинки
могут содержать концентраторы напряжений типа отверстий или трещин. При
эксплуатации пластинки могут подвергаться действию температурных полей,
которые способны порождать высокие концентрации напряжений в пластинке.
Это следует учитывать при проектировании и эксплуатации конструкций [1–3].
К настоящему времени было проведено множество исследований температурно-
го воздействия на пластинки с электроупругими свойствами [4], в том числе,
действия линейного потока тепла [5].

В данной работе на основе известного решения задачи о действии линейно-
го потока тепла в многосвязной пластинке из пьезоматериала [5] исследовано
влияние краевых трещин, выходящих из контуров отверстий в пластинке, на
значения температурных напряжений окрестности этих контуров в зависимости
от их конфигурации, размеров и тепловых граничных условий. Дополнительно
исследовано термонапряженное состояние около вершин трещин (значения ко-
эффициентов интенсивности напряжений). Проведены численные исследования
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термоэлектромагнитоупругого состояния находящейся под действием линейного
потока тепла пластинки с круговым отверстием и краевой трещиной, направлен-
ной вдоль либо поперек действия потока тепла с установлением закономерностей
влияния вышеуказанных факторов на значения напряжений в пластинке.

1. Постановка и решение задачи о действии

-
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Рис. 1

линейного потока тепла. Рассмотрим пластинку
из пьезоматериала, находящуюся в условиях обоб-
щенного плоского термоэлектромагнитоупругого со-
стояния, занимающую бесконечную многосвязную об-
ласть S, ограниченную контурами эллиптических от-
верстий Ll (l = 1, L) с центрами Ol(x0l, y0l), полуося-
ми al, bl, углами поворота φl (рис. 1). Контуры Ll

могут располагаться произвольно относительно друг
друга, в том числе, касаться, пересекаться, переходить в прямолинейные раз-
резы. На контурах пластинки заданы значения температуры Tl либо плотности
теплового потока qln. Контуры не подкреплены либо жестко подкреплены, элек-
тромагнитные воздействия отсутствуют. На бесконечности под углом α к оси Ox
действует линейный тепловой поток плотности q, а механические и электромаг-
нитные воздействия отсутствуют.

Если несвязанную задачу определения термоэлектромагнитоупругого состо-
яния пластинки из пьезоматериала решать с использованием комплексных по-
тенциалов, то она сводится к последовательному определению комплексного по-
тенциала теплопроводности F5(z5), а затем комплексных потенциалов термо-
электромагнитоупругости Φk(zk) (k = 1, 4) из граничных условий соответствен-
но задачи теплопроводности и задачи термоэлектромагнитоупругости.

Комплексный потенциал теплопроводности F5(z5) является функцией обоб-
щенной комплексной переменной z5, которая определяется аффинным преобра-
зованием вида

z5 = x+ µ5y. (1)

Здесь µ5 – корень характеристического уравнения теплопроводности [4, 5]

k22µ
2 + 2k12µ+ k11 = 0, (2)

где kij – коэффициенты теплопроводности материала пластинки. После опреде-
ления функции F5(z5) значения основных характеристик температурного поля
(относительной температуры T , плотностей потока тепла qx, qy) в точках пла-
стинки определяются по формулам [4,5]

T = T ∗ + 2ReF5(z5), (3)

(qx, qy) = (q∗x, q
∗
y) + 2Re iκ (µ5, −1)F ′

5(z5), (4)

где
T ∗ = q(txx+ tyy),
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tx =
k22 cosα− k12 sinα

κ2
, ty =

k11 sinα− k12 cosα

κ2
,

q∗x = −q cosα, q∗y = −q sinα,

κ =
√
k11k22 − k212.

Комплексные потенциалы термоэлектромагнитоупругости Φk(zk) (k = 1, 4)
являются функциями обобщенных комплексных переменных zk (k = 1, 4), ко-
торые определяются аффинными преобразованиями вида

zk = x+ µky. (5)

Здесь µk (k = 1, 4) – корни характеристического уравнения электромагнито-
упругости [4, 5]

l8(µ) = 0, (6)

где

l8(µ) =

∣∣∣∣∣∣
l4s(µ) l3g(µ) l3p(µ)
l3g(µ) l2β(µ) l2ν(µ)
l3p(µ) l2ν(µ) l2χ(µ)

∣∣∣∣∣∣ ,
l4s(µ) = s11µ

4 − 2s16µ
3 + (2s12 + s66)µ

2 − 2s26µ+ s22,

l3g(µ) = g11µ
3 − (g21 + g16)µ

2 + (g12 + g26)µ− g22,

l3p(µ) = p11µ
3 − (p21 + p16)µ

2 + (p12 + p26)µ− p22,

l2β(µ) = −β11µ2 + 2β12µ− β22,

l2ν(µ) = −ν11µ2 + 2ν12µ− ν22,

l2χ(µ) = −χ11µ
2 + 2χ12µ− χ22;

sij – коэффициенты деформации материала; gij и pij – пьезоэлектрические и пье-
зомагнитные модули материала; βij , νij и χij – коэффициенты диэлектрической,
электромагнитной и магнитной проницаемости материала; αi – коэффициенты
теплового расширения материала; ti иmi – пироэлектрические и пиромагнитные
модули материала. После определения функций Φk(zk) значения основных ха-
рактеристик термоэлектромагнитоупругого состояния (напряжений σx, σy, τxy;
индукций электрического поля Dx, Dy; индукций магнитного поля Bx, By; на-
пряженностей электрического поля Ex, Ey; напряженностей магнитного поля
Hx, Hy; перемещений u, v; потенциала электрического поля φ; потенциала маг-
нитного поля ψ) в точках пластинки можно определять по формулам [4,5]

(σx, σy, τxy) = 2Re

5∑
k=1

(
µ2k, 1, −µk

)
Φ′
k(zk); (7)

(Dx, Dy, Bx, By) = 2Re
5∑

k=1

(νkµk, −νk, ρkµk, −ρk) Φ′
k(zk); (8)
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(Ex, Ey, Hx, Hy) =
(
E∗

x, E
∗
y , H

∗
x, H

∗
y

)
− 2Re

5∑
k=1

(
r0k, µkr

0
k, h

0
k, µkh

0
k

)
Φ′
k(zk); (9)

(u, v, φ, ψ) = (u∗, v∗, φ∗, ψ∗) + 2Re

5∑
k=1

(
pk, qk, r

0
k, h

0
k

)
Φk(zk). (10)

Здесь

νk =
l3p(µk)l2ν(µk)− l3g(µk)l2χ(µk)

l2β(µk)l2χ(µk)− l22ν(µk)
(k = 1, 4), ν5 =

rχ
r5
,

ρk =
l5g(µk)l2ν(µk)− l5p(µk)l2β(µk)

l2β(µk)l2χ(µk)− l22ν(µk)
(k = 1, 4), ρ5 =

rω
r5
,

r5 =
l5(µ5)

l8(µ5)
, rχ =

lχ(µ5)

l8(µ5)
, rω =

lω(µ5)

l8(µ5)
,

l5(µ5) =

∣∣∣∣∣∣
l2α(µ5) l3g(µ5) l3p(µ5)
l1t(µ5) l2β(µ5) l2ν(µ5)
l1m(µ5) l2ν(µ5) l2χ(µ5)

∣∣∣∣∣∣ ,
lχ(µ5) =

∣∣∣∣∣∣
l4s(µ5) l2α(µ5) l3p(µ5)
l3g(µ5) l1t(µ5) l2ν(µ5)
l3p(µ5) l1m(µ5) l2χ(µ5)

∣∣∣∣∣∣ ,
lω(µ5) =

∣∣∣∣∣∣
l4s(µ5) l3g(µ5) l2α(µ5)
l3g(µ5) l2β(µ5) l1t(µ5)
l3p(µ5) l2ν(µ5) l1m(µ5)

∣∣∣∣∣∣ ,
l2α(µ5) = −α1µ

2
5 + α6µ5 − α2,

l1t(µ5) = t1µ5 − t2,

l1m(µ5) = m1µ5 −m2,

pk = s11µ
2
k − s16µk + s12 + (g11µk − g12) νk + (p11µk − p12) ρk +

δk5α1

r5
,

qk = s12µk − s26 +
s22
µk

−
(
g21 −

g22
µk

)
νk −

(
p21 −

p22
µk

)
ρk +

δk5α2

r5µ5
,

r0k = g11µ
2
k − g16µk + g12 − (β11µk − β12) νk − (ν11µk − ν12) ρk +

δk5t1
r5

,

h0k = p11µ
2
k − p16µk + p12 − (ν11µk − ν12) νk − (χ11µk − χ12) ρk +

δk5m1

r5
,(

E∗
x, E

∗
y , H

∗
x, H

∗
y

)
= (t1, t2,m1,m2)T

∗,

u∗ = q

(
α1tx
2

x2 − α2tx − α6ty
2

y2 + α1tyxy

)
,
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v∗ = q

(
α2ty
2

y2 − α1ty − α6tx
2

x2 + α2txxy

)
,

φ∗ = −q
(
t1tx
2
x2 − t2ty

2
y2 − t1txxy

)
,

ψ∗ = −q
(
m1tx
2

x2 − m2ty
2

y2 −m1txxy

)
,

Φ5(z5) = r5

∫
F5(z5) dz5,

δij – символ Кронекера.
В общем случае эти функции принимают вид [4,5]

F5(z5) = c5 +

L∑
l=1

D5lw5l(z5) +

L∑
l=1

∞∑
n=1

c5lnφ5ln(z5), (11)

Φk(zk) = Nk(zk) +
L∑
l=1

∞∑
n=1

aklnφkln(zk). (12)

Здесь c5, D5l – вещественные постоянные, определяемые из граничных условий
задачи теплопроводности; w5l(z5) = ln (z5 − z5l); z5l – точки, соответствующие
при аффинном преобразовании (1) произвольным точкам внутри контуров Ll;
c5ln – комплексные постоянные, определяемые из граничных условий задачи
теплопроводности; φ5ln(z5) = ζ−n

5l ; ζ5l – комплексные переменные, определяемые
из конформных отображений;

Nk(zk) = Γkzk +

L∑
l=1

(Aklzk +Bkl)wkl(zk);

Γk, Akl, Bkl – комплексные постоянные, определяемые из решений систем ли-
нейных алгебраических уравнений

2Re

4∑
k=1

(
1, µk, µ

2
k, qk − µkpk, νk, µkνk, ρk, µkρk

)
Γk =

= −2Re
(
1, µ5, µ

2
5, q5 − µ5p5, ν5, µ5ν5, ρ5, µ5ρ5

)
Γ5,

2Re

4∑
k=1

(
1, µk, pk, qk, νk, ρk, r

0
k, h

0
k

)
iAkl =

= −2Re
(
1, µ5, p5, q5, ν5, ρ5, r

0
5, h

0
5

)
iA5l,

2Re
4∑

k=1

(
1, µk, pk, qk, νk, ρk, r

0
k, h

0
k

)
iBkl =

= −2Re
(
1, µ5, p5, q5, ν5, ρ5, r

0
5, h

0
5

)
iB5l;
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Γ5 = r5c5; A5l = r5D5l; B5l = r5(c5l1R5l − D5lz5l); wkl = ln (zk − zkl); zkl – точ-
ки, соответствующие при аффинном преобразовании (5) произвольным точкам
внутри контуров Ll; akln – комплексные постоянные, определяемые из гранич-
ных условий задачи термоэлектромагнитоупругости; φkln(zk) = ζ−n

kl ; ζkl – ком-
плексные переменные, определяемые из конформных отображений.

В локальных системах координат Olxlyl уравнения эллипсов (рис. 1) в пара-
метрической форме принимают вид [4]

xl = al cos θ, yl = bl sin θ,

а в основной системе координат Oxy –

x = x0l + xl cosφl − yl sinφl,

y = y0l + xl sinφl + yl cosφl,

где θ (0 ≤ θ ≤ 2π) – угловой параметр уравнения эллипса.
Комплексные переменные ζkl (k = 1, 5) определяются из конформных отоб-

ражений внешностей единичных кругов |ζkl| ≥ 1 на внешности эллипсов Lkl [4]

zk = zkl +Rkl

(
ζkl +

mkl

ζkl

)
, (13)

где
zkl = x0l + µky0l,

Rkl =
al(cosφl + µk sinφl) + ibl(sinφl − µk cosφl)

2
,

mkl =
al(cosφl + µk sinφl)− ibl(sinφl − µk cosφl)

2Rkl
.

Функция F5(z5) должна удовлетворять граничному условию [4,5]

2Re dlF5(τ5) = fl(τ), (14)

где τ5 – точка, получаемая из граничной точки при аффинном преобразовании
(1); τ – аффикс граничной точки. В случае задания на контуре Ll значений
температуры Tl

dl = 1, fl(τ) = Tl,

а в случае задания плотности потока тепла qnl по направлению нормали

dl = iκ, fl(τ) =

s∫
0

(q∗n(τ)− qnl(τ)) ds+ cl;

q∗n(τ) = q∗x cos(nx) + q∗y sin(ny); cl – неизвестные постоянные интегрирования.
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Функции Φk(zk) (k = 1, 4) должны удовлетворять граничным условиям [4,5]

2Re
4∑

k=1

(dkl1, dkl2, dkl3, dkl4) δk,s(τk)Φ
′
k(τk) =

=

(
dfl1
ds

(τ),
dfl2
ds

(τ),
dfl3
ds

(τ),
dfl4
ds

(τ)

)
−

−2Re (d5l1, d5l2, d5l3, d5l4) δ5,s(τ5)r5F5(τ5),

(15)

где τk (k = 1, 4) – точки, получаемые из граничной точки при аффинных пре-
образованиях (5); δk,s(τk) = dτk/ds. Для неподкрепленных контуров

(dkl1, dkl2, dkl3, dkl4) = (1, µk, νk, ρk) ,

(fl1(τ), fl2(τ), fl3(τ), fl4(τ)) = (cl1, cl2, cl3, cl4) ,

а для жестко подкрепленных контуров

(dkl1, dkl2, dkl3, dkl4) = (pk, qk, νk, ρk) ,

(fl1(τ), fl2(τ), fl3(τ), fl4(τ)) = (ul(τ)− u∗(τ), vl(τ)− v∗(τ), cl3, cl4) ;

clp – неизвестные постоянные интегрирования; ul(τ), vl(τ) – заданные на границе
значения перемещений.

В общем случае многосвязной области (рис. 1) неизвестные постоянные c5,
Dl, c5ln, akln определяются из граничных условий (14) и (15) с использованием
метода наименьших квадратов. Для этого на контурах Lj выбирается система
точекMjm (m = 1,Mi), в которых минимизируются невязки граничных условий
соответствующих задач.

В задаче теплопроводности при подстановке функции (11) в граничное усло-
вие (14) для определения неизвестных постоянных c5, Dl, c5ln получается систе-
ма линейных алгебраических уравнений [4,5]

2Re djc5 + 2Re

L∑
l=1

djw5l(τ5jm)D5l + 2Re

L∑
l=1

∞∑
n=1

djφ5ln(τ5jm)c5ln = fj(τjm)

(j = 1, L, m = 1, Mj),

(16)

где τ5jm = xjm + µ5yjm, τjm – аффикс точки Mjm. Систему (16) можно решать
с использованием метода сингулярных разложений [6, 7]. После решения этой
системы постоянные c5, Dl, c5ln, а следовательно, и комплексный потенциал
теплопроводности (11) будут известны. По известной функции можно в любой
точке найти температуру и плотности потока тепла по формулам (3)–(4).

В задаче термоэлектромагнитоупругости при подстановке функций (11) и
(12) в условия (15) для определения неизвестных постоянных akln получается
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система линейных алгебраических уравнений [4,5]

2Re

4∑
k=1

L∑
l=1

∞∑
n=1

dkjpδk,s(τkjm)φ′
kln(tkjm)akln =

= −2Re
4∑

k=1

dkjpδk,s(τkjm)N ′
k(tkjm)−

−2Re d5jpδ5,s(τ5jm)r5F5(t5jm) +
dfjp
ds

(tjm)

(j = 1, L, m = 1, Mj , p = 1, 4),

(17)

где τkim = xim + µkyim. Систему (17) можно решать с использованием метода
сингулярных разложений [6, 7]. После решения этой системы постоянные akln,
а следовательно, комплексные потенциалы термоэлектромагнитоупругости (12)
будут известны, и по ним можно находить значения основных характеристик
термоэлектромагнитоупругого состояния в точках пластинки по формулам (7)–
(10) [4, 5]. Если эллипс Ll в предельном случае трансформируется в прямоли-
нейный разрез (bl → 0), то можно вычислить и коэффициенты интенсивности
напряжений, индукций и напряженностей по формулам [5]

k±1 = 2Re

4∑
k=1

[
µ2k sin

2 φl + cos2 φl + 2µk sinφl cosφl

]
M±

kl ,

k±2 = 2Re
4∑

k=1

[(
1− µ2k

)
sinφl cosφl − µk(cos

2 φl − sin2 φl)
]
M±

kl ,

k±D = 2Re
4∑

k=1

[−νk cosφl − νkµk sinφl]M
±
kl ,

k±E = 2Re

4∑
k=1

[
r0kµk cosφl − r0k sinφl

]
M±

kl ,

(
k±B , k

±
H

)
= 2Re

4∑
k=1

[−ρk cosφl − ρkµk sinφl]M
±
kl ,

(
k±B , k

±
H

)
= 2Re

4∑
k=1

[
h0kµk cosφl − h0k sinφl

]
M±

kl ,

где

M±
kl =

1
√
al

(
Akl(zkl ± al) +Bkl −

∞∑
n=1

(±1)nnakln

)
.
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2. Численные исследования. Были проведены численные исследования
термоэлектромагнитоупругого состояния пластинок с круговым отверстием ра-
диуса a (a1 = b1 = a) и горизонтальной (рис. 2, a) или вертикальной (рис. 2, б )
краевой трещиной длины ℓ (a2 = b2 = ℓ/2). Контур отверстия и берега трещин
полагались неподкрепленными.
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Рис. 2
Пластинки полагались изготовленными из следующих материалов:

• композит BaTiO3 − CoFe2O4 (материал М1) [9, 10]:

s11 = 7, 165s0, s22 = 6, 797s0, s66 = 19, 912s0, s12 = −2, 337s0,

g16 = 2, 028g0, g21 = −0, 496g0, g22 = 1, 157g0,

p16 = 1, 850p0, p21 = 0, 576p0, p22 = 1, 186p0,

β11 = 0, 156β0, β22 = 0, 137β0, ν11 = −0, 190ν0, ν22 = −0, 185ν0,

χ11 = 0, 336χ0, χ22 = 0, 119χ0, α1 = 8, 530α0, α2 = 1, 990α0,

t2 = 133, 000t0, m2 = 133, 000m0, k11 = 2, 5k0, k22 = 2, 5k0;

• композит на основе CdSe и BaTiO3 (материал М2) [9, 11]:

s11 = 22, 260s0, s22 = 14, 984s0, s66 = 47, 481s0, s12 = −6, 437s0,

g16 = 109, 220g0, g21 = −4, 333g0, g22 = 8, 016g0,

p16 = 268, 318p0, p21 = 17, 778p0, p22 = 31, 206p0,

β11 = 19, 612β0, β22 = 10, 612β0, ν11 = 213, 404ν0, ν22 = −5, 534ν0,

χ11 = 0, 590χ0, χ22 = 0, 575χ0, α1 = −3, 031α0, α2 = −0, 608α0,

t2 = 40, 853t0, m2 = 0, 394m0, k11 = 9, 0k0, k22 = 9, 0k0;

• композит на основе PZT − 4 и CoFe2O4 (материал М3) [9, 11]:

s11 = 10, 745s0, s22 = 7, 398s0, s66 = 7, 637s0, s12 = −2, 542s0,

g16 = 2, 054g0, g21 = −1, 159g0, g22 = 2, 458g0,

p16 = 98, 843p0, p21 = 12, 102p0, p22 = 22, 268p0,

β11 = 0, 106β0, β22 = 0, 090β0, ν11 = −14, 931ν0, ν22 = −3, 740ν0,

χ11 = 0, 805χ0, χ22 = 0, 704χ0, α1 = −1, 578α0, α2 = −0, 326α0,

t2 = 2, 405t0, m2 = 0, 207m0, k11 = 1, 2k0, k22 = 1, 5k0.
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Здесь приняты такие обозначения: s0 = 10−6 МПа−1, g0 = 10−2 МКл−1 · м2,
p0 = 10−5 МТл−1, β0 = 103 МН · м2 · МКл−2, ν0 = 10−1 МКл−1 · м · МА,
χ0 = 10−1 МПа · МТл−1, α0 = 10−6 К−1, t0 = 10−3 МН · (МКл · К)−1,
m0 = 10−3 МА · (м · К)−1, k0 = 1Вт · (м · К)−1.

При проведении численных исследований количество членов в рядах Лорана
для функций (11) и (12) и «коллокационных точек» Mj на контурах Lj , для
которых составлялись системы линейных алгебраических уравнений (16) и (17),
увеличивались до тех пор, пока граничные условия на контурах не удовлетворя-
лись с достаточно высокой степенью точности (относительная погрешность не
становилась менее сотых долей процента). Для этого, как показали исследова-
ния, в решаемых задачах, в зависимости от геометрических и упругих характе-
ристик пластинок необходимо было в указанных рядах оставлять от 50 до 100
членов, на каждом из контуров брать от 400 до 1000 «коллокационных точек».

При этом решались следующие задачи: задача термоэлектромагнитоупру-
гости (ТЭМУ), когда учитываются все свойства материала пластинки; задача
термоупругости (ТУ), когда электромагнитные свойства материала пластинки
не учитываются.

Таблица 1. Значения напряжений σs, МПа в точках контура отверстия (рис. 2, a, случай 1)
Тип θ, Значения ℓ/a

задачи рад. 0 0, 25 0, 5 0, 75 1 1, 25 1, 5 1, 75 2
Материал М1

ТЭМУ π/12 −0, 188 −0, 156 −0, 097 −0, 061 −0, 044 −0, 034 −0, 028 −0, 024 −0, 022
π/4 −0, 448 −0, 445 −0, 430 −0, 404 −0, 376 −0, 350 −0, 328 −0, 308 −0, 293
π/2 0, 476 0, 476 0, 479 0, 486 0, 495 0, 505 0, 516 0, 528 0, 539
3π/4 −0, 448 −0, 448 −0, 448 −0, 446 −0, 444 −0, 441 −0, 437 −0, 434 −0, 430

ТУ π/12 0, 036 0, 029 0, 010 −0, 003 −0, 011 −0, 016 −0, 019 −0, 021 −0, 023
π/4 0, 204 0, 203 0, 198 0, 187 0, 176 0, 163 0, 151 0, 140 0, 131
π/2 0, 476 0, 476 0, 475 0, 472 0, 469 0, 464 0, 458 0, 452 0, 446
3π/4 0, 204 0, 204 0, 204 0, 202 0, 202 0, 200 0, 198 0, 196 0, 194

Материал М2
ТЭМУ π/12 −0, 005 −0, 003 0, 006 0, 006 0, 009 0, 009 0, 005 0, 010 0, 010

π/4 −0, 011 −0, 011 −0, 014 −0, 013 −0, 014 −0, 014 −0, 011 −0, 013 −0, 012
π/2 −0, 015 −0, 015 −0, 014 −0, 014 −0, 013 −0, 013 −0, 013 −0, 013 −0, 012
3π/4 −0, 011 −0, 011 −0, 011 −0, 011 −0, 011 −0, 011 −0, 011 −0, 010 −0, 010

ТУ π/12 −0, 001 −0, 001 0, 000 0, 000 0, 001 0, 001 0, 001 0, 001 0, 001
π/4 −0, 008 −0, 008 −0, 008 −0, 007 −0, 007 −0, 006 −0, 006 −0, 005 −0, 005
π/2 −0, 015 −0, 015 −0, 015 −0, 015 −0, 015 −0, 014 −0, 014 −0, 014 −0, 014
3π/4 −0, 008 −0, 008 −0, 008 −0, 008 −0, 008 −0, 008 −0, 008 −0, 008 −0, 007

Материал М3
ТЭМУ π/12 −0, 029 −0, 024 −0, 014 −0, 006 −0, 003 0, 000 0, 001 0, 002 0, 003

π/4 −0, 110 −0, 109 −0, 106 −0, 100 −0, 093 −0, 086 −0, 080 −0, 076 −0, 071
π/2 −0, 091 −0, 091 −0, 090 −0, 089 −0, 087 −0, 084 −0, 081 −0, 078 −0, 075
3π/4 −0, 110 −0, 110 −0, 110 −0, 109 −0, 109 −0, 108 −0, 107 −0, 106 −0, 105

ТУ π/12 −0, 014 −0, 009 −0, 001 0, 002 0, 004 0, 005 0, 006 0, 006 0, 006
π/4 −0, 090 −0, 089 −0, 085 −0, 077 −0, 070 −0, 063 −0, 058 −0, 053 −0, 049
π/2 −0, 094 −0, 094 −0, 093 −0, 092 −0, 091 −0, 089 −0, 088 −0, 086 −0, 084
3π/4 −0, 090 −0, 090 −0, 090 −0, 089 −0, 088 −0, 087 −0, 086 −0, 084 −0, 083
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Угол действия потока тепла α выбирался таким образом, чтобы для сплош-
ной пластинки без отверстий и трещин не возникали индукции электромагнит-
ного поля. Поскольку материалы М1 и М3 поляризованы вдоль оси Oy, то таким
углом является [12] угол α = π/2.

В таблице 1 для случая действия линейного теплового потока q с плотностью
q = 1Вт · (м · К)−1 приведены значения напряжений σs, МПа в точках контура
кругового отверстия в пластинке с круговым отверстием и горизонтальной кра-
евой трещиной (рис. 2, a), на контурах которых задана одинаковая температура
(здесь и далее – условия 1), в зависимости от значения отношения ℓ/a.

В таблице 2 приведены аналогичные значения напряжений σs, МПа в этой же
пластинке для случая теплоизолированных контура отверстия и берегов трещин
(здесь и далее – условия 2).

Таблица 2. Значения напряжений σs, МПа в точках контура отверстия (рис. 2, a, случай 2)
Тип θ, Значения ℓ/a

задачи рад. 0 0, 25 0, 5 0, 75 1 1, 25 1, 5 1, 75 2
Материал М1

ТЭМУ π/12 0, 188 −0, 006 −0, 006 −0, 135 −0, 218 −0, 269 −0, 302 −0, 321 −0, 331
π/4 0, 448 0, 412 0, 412 0, 321 0, 188 0, 033 −0, 132 −0, 299 −0, 464
π/2 −0, 476 −0, 509 −0, 509 −0, 551 −0, 609 −0, 680 −0, 762 −0, 852 −0, 948
3π/4 0, 448 0, 497 0, 497 0, 540 0, 586 0, 634 0, 682 0, 730 0, 777

ТУ π/12 −0, 036 −0, 034 −0, 036 −0, 037 −0, 038 −0, 039 −0, 039 −0.039 −0, 039
π/4 −0, 204 −0, 220 −0, 258 −0, 307 −0, 359 −0, 413 −0, 466 −0.518 −0, 569
π/2 −0, 476 −0, 498 −0, 549 −0, 619 −0, 699 −0, 788 −0, 882 −0.980 −1, 081
3π/4 −0, 204 −0, 215 −0, 242 −0, 278 −0, 322 −0, 372 −0, 426 −0.483 −0, 544

Материал М2
ТЭМУ π/12 0, 005 0, 004 0, 002 0, 000 −0, 002 −0, 003 −0, 004 −0, 004 −0, 005

π/4 0, 011 0, 012 0, 012 0, 013 0, 013 0, 013 0, 013 0, 013 0, 013
π/2 0, 015 0, 016 0, 018 0, 021 0, 024 0, 027 0, 030 0, 034 0, 037
3π/4 0, 011 0, 012 0, 013 0, 014 0, 016 0, 018 0, 020 0, 022 0, 024

ТУ π/12 0, 001 0, 001 0, 001 0, 002 0, 002 0, 002 0, 002 0, 002 0, 002
π/4 0, 008 0, 009 0, 010 0, 012 0, 014 0, 016 0, 018 0, 020 0, 022
π/2 0, 015 0, 016 0, 017 0, 019 0, 022 0, 024 0, 027 0, 030 0, 033
3π/4 0, 008 0, 008 0, 009 0, 011 0, 012 0, 014 0, 016 0, 018 0, 021

Материал М3
ТЭМУ π/12 0, 033 0, 028 0, 011 −0, 002 −0, 009 −0, 014 −0, 016 −0, 018 −0, 019

π/4 0, 123 0, 127 0, 133 0, 133 0, 130 0, 126 0, 121 0, 116 0, 111
π/2 0, 101 0, 108 0, 124 0, 142 0, 163 0, 185 0, 207 0, 230 0, 253
3π/4 0, 123 0, 129 0, 143 0, 161 0, 182 0, 206 0, 230 0, 256 0, 282

ТУ π/12 0, 015 0, 013 0, 010 0, 008 0, 008 0, 008 0, 007 0, 007 0, 007
π/4 0, 101 0, 109 0, 125 0, 142 0, 160 0, 179 0, 197 0, 216 0, 234
π/2 0, 105 0, 110 0, 122 0, 138 0, 155 0, 173 0, 192 0, 212 0, 232
3π/4 0, 101 0, 107 0, 120 0, 139 0, 160 0, 183 0, 208 0, 234 0, 262

В таблицах 3 и 4 для случая действия линейного теплового потока q с плот-
ностью q = 1Вт · (м · К)−1 приведены значения коэффициента интенсивности
напряжений k+2 для вершины трещины в этой же пластинке, в зависимости от
значения отношения ℓ/a для случаев условий 1 и условий 2 соответственно.
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Таблица 3. Значения КИН k+
2 у вершины трещины (рис. 2, a, случай 1)

Тип Значения ℓ/a
задачи 0, 25 0, 5 0, 75 1 1, 25 1, 5 1, 75 2

Материал М1
ТЭМУ 4, 0540 7, 3501 9, 3944 10, 4548 10, 9510 11, 0981 11, 0283 10, 8420

ТУ −1, 0143 −2, 4683 −3, 7245 −4, 7132 −5, 4646 −6, 0324 −6, 4604 −6, 7808
Материал М2

ТЭМУ 0, 0775 0, 1241 0, 1939 0, 2379 0, 2691 0, 3042 0, 3061 0, 3154
ТУ 0, 0417 0, 0978 0, 1439 0, 1787 0, 2042 0, 2228 0, 2364 0, 2463

Материал М3
ТЭМУ 0, 7386 1, 5542 2, 1120 2, 4706 2, 7036 2, 8529 2, 9463 3, 0028

ТУ 0, 4650 1, 1104 1, 5826 1, 8913 2, 0923 2, 2235 2, 3086 2, 3628

Таблица 4. Значения КИН k+
2 у вершины трещины (рис. 2, a, случай 2)

Тип Значения ℓ/a
задачи 0, 25 0, 5 0, 75 1 1, 25 1, 5 1, 75 2

Материал М1
ТЭМУ −5, 8713 −12, 2037 −17, 1461 −20, 8524 −23, 6594 −25, 8473 −27, 6177 −29, 1123

ТУ 0, 7796 2, 3716 4, 4228 6, 7636 9, 3026 11, 9880 14, 2200 17, 6836
Материал М2

ТЭМУ −0, 1111 −0, 2371 −0, 3543 −0, 4668 −0, 5770 −0, 6867 −0, 7971 −0, 9087
ТУ −0, 0320 −0, 0953 −0, 1733 −0, 2595 −0, 3511 −0, 4467 −0, 5454 −0, 6469

Материал М3
ТЭМУ −1, 0200 −2, 3436 −3, 5586 −4, 6815 −5, 7556 −6, 8106 −7, 8638 −8, 9254

ТУ −0, 4426 −1, 3190 −2, 2780 −3, 2417 −4, 2067 −5, 1782 −6, 1603 −7, 1557

В таблице 5 для случая действия аналогичного линейного теплового потока
приведены значения напряжений σs, МПа в точках контура кругового отверстия
в пластинке из материала М1 с круговым отверстием и вертикальной краевой
трещиной (рис. 2, б ) для случая условий 1 в зависимости от значения отношения
ℓ/a, а в таблице 6 – значения коэффициента интенсивности напряжений k+1 для
вершины трещины в этой же пластинке для случая условий 1 в зависимости от
значения отношения ℓ/a.

Выводы. Из приведенных данных для случая пластинки отверстием с го-
ризонтальной краевой трещиной видно, что длина трещины оказывает мало-
выраженное влияние на термоэлектромагнитоупругое состояние около отвер-
стия в случае 1 и оказывает существенное влияние в случае 2 – тогда с длиной
трещины стремительно растут по модулю значения напряжений. Вместе с тем,
установлено, что длина краевой трещины оказывает значительное влияние на
значения КИН у ее вершины. Трещине большей длины соответствует большее
значение КИН. Установлено, что более значительный рост КИН наблюдается
в случае 2, нежели в случае 1. Пренебрежение электромагнитными свойствами
материала (при решении задачи ТУ) существенно искажает истинные значения
напряжений и КИН (при решении задачи ТЭМУ), поэтому при расчетах нельзя
не учитывать эти свойства.
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Таблица 5. Значения напряжений σs в точках контура отверстия (рис. 2, б, случай 1)
Тип θ, Значения ℓ/a

задачи рад. 0 0, 25 0, 5 0, 75 1 1, 25 1, 5 1, 75 2
ТЭМУ −π/2 −0, 476 −0, 669 −0, 811 −0, 901 −0, 954 −1, 020 −1, 079 −1, 105 −1, 133

−5π/12 −0, 120 −0, 177 −0, 222 −0, 250 −0, 266 −0, 286 −0, 305 −0, 310 −0, 318
−π/3 0, 330 0, 471 0, 569 0, 631 0, 671 0, 717 0, 759 0, 784 0, 805
−π/4 0, 448 0, 696 0, 872 0, 984 1, 053 1, 136 1, 210 1, 249 1, 285
−π/6 0, 357 0, 645 0, 852 0, 983 1, 062 1, 158 1, 244 1, 285 1, 325
−π/12 0, 188 0, 489 0, 704 0, 839 0, 918 1, 015 1, 102 1, 138 1, 176

0 0, 000 0, 300 0, 512 0, 640 0, 711 0, 801 0, 882 0, 911 0, 944
π/12 −0, 188 0, 101 0, 297 0, 410 0, 468 0, 546 0, 617 0, 639 0, 665
π/6 −0, 357 −0, 095 0, 073 0, 163 0, 203 0, 266 0, 325 0, 342 0, 364
π/4 −0, 448 −0, 250 −0, 134 −0, 077 −0, 054 −0, 007 0, 041 0, 057 0, 078
π/3 −0, 330 −0, 278 −0, 247 −0, 227 −0, 216 −0, 184 −0, 151 −0, 135 −0, 117
5π/12 0, 120 −0, 095 −0, 122 −0, 123 −0, 120 −0, 115 −0, 109 −0, 105 −0, 100
π/2 0, 476 − − − − − − − −

ТУ −π/2 −0, 476 −0, 598 −0, 676 −0, 726 −0, 756 −0, 793 −0, 815 −0, 840 −0, 851
−5π/12 −0, 433 −0, 549 −0, 625 −0, 673 −0, 701 −0, 737 −0, 759 −0, 782 −0, 793
−π/3 −0, 327 −0, 429 −0, 497 −0, 541 −0, 567 −0, 600 −0, 621 −0, 640 −0, 649
−π/4 −0, 204 −0, 290 −0, 349 −0, 387 −0, 410 −0, 438 −0, 458 −0, 473 −0, 481
−π/6 −0, 102 −0, 172 −0, 223 −0, 255 −0, 275 −0, 299 −0, 318 −0, 327 −0, 334
−π/12 −0, 036 −0, 096 −0, 140 −0, 167 −0, 183 −0, 203 −0, 221 −0, 228 −0, 234

0 0, 000 −0, 056 −0, 096 −0, 120 −0, 134 −0, 152 −0, 170 −0, 175 −0, 183
π/12 0, 036 −0, 026 −0, 068 −0, 093 −0, 108 −0, 126 −0, 145 −0, 152 −0, 164
π/6 0, 102 0, 021 −0, 032 −0, 063 −0, 083 −0, 104 −0, 126 −0, 138 −0, 152
π/4 0, 204 0, 089 0, 013 −0, 031 −0, 059 −0, 083 −0, 104 −0, 118 −0, 132
π/3 0, 327 0, 142 0, 031 −0, 019 −0, 045 −0, 062 −0, 075 −0, 083 −0, 090
5π/12 0, 433 0, 070 −0, 012 −0, 024 −0, 026 −0, 026 −0, 026 −0, 025 −0, 025
π/2 0, 476 − − − − − − − −

Таблица 6. Значения КИН k+
1 у вершины трещины (рис. 2, б, случай 1)

Тип Значения ℓ/a
задачи 0, 25 0, 5 0, 75 1 1, 25 1, 5 1, 75 2
ТЭМУ −0, 8033 −1, 7042 −2, 6363 −3, 4911 −4, 2852 −5, 2617 −6, 3325 −7, 8550

ТУ 3, 4008 6, 6432 10, 3565 14, 3779 18, 3053 22, 4355 27, 2665 32, 4185

Для случая пластинки c отверстием с вертикальной краевой трещиной вид-
но, что длина трещины оказывает существенное влияние на ТЭМУС около от-
верстия в случае 1. Значения напряжений резко уменьшаются около точки вы-
хода трещины на контур отверстия. В других частях контура напряжения, на-
оборот, резко возрастают с длиной трещины. Вместе с тем, установлено, что
длина краевой трещины оказывает значительное влияние на значения КИН у
ее вершины. Трещине большей длины соответствует большее значение КИН у
ее конца. Как в случае горизонтальной краевой трещины, при решении задачи
ТУ значения напряжений и КИН значительно искажаются, поэтому необходимо
учитывать все свойства материала пластинки.

При этом, наибольшие напряжения возникают в пластинке из материала
М1. Это связано тем, что материал М1 имеет, по сравнению с материалами
М2 и М3, наименьшие коэффициенты деформации (наибольшую жесткость),
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наименьшие пьезомагнитные коэффициенты, наибольшие пироэлектрические и
пиромагнитные модули и наибольшие коэффициенты теплового расширения.
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Неосесимметричные нормальные волны с многофакторной функциональной неоднородностью

Введение и цели исследования. Теоретические исследования в обла-
сти волновой динамики, как правило, предполагают построение базисных на-
боров аналитических частных решений дифференциальных уравнений для со-
ответствующих пространственных моделей. В случае изучения волновых про-
цессов в полых протяженных цилиндрах из инновационных функционально-
градиентных материалов плодотворным оказался подход, связанный с заданием
специального вида функциональных законов изменения физико-механических
характеристик материала волновода и привлечение аппарата рядов по обобщен-
ной кольцевой координате. Так, для единого двухпараметрического экспоненци-
ально-степенного закона радиальной неоднородности материала волновода по-
строены в аналитическом виде базисные наборы частных решений уравнений
модели для случаев изотропного [1], трансверсально-изотропного [2] и ортотроп-
ного [3] материалов. Устранение лежащего в основе представленных исследова-
ний ограничения, связанного с единообразным видом функциональных зако-
нов неоднородности, лежит в области привлечения многофакторных моделей
функциональной радиальной неоднородности. В работе [4] на базе введенных
специальных двух- и трехфакторных моделей неоднородности, свободных от
ограничений на независимый вид функциональных законов изменения физико-
механических характеристик изотропного материала волновода, построены ба-
зисные наборы аналитических частных решений уравнений математической мо-
дели для двух типов осесимметричных нормальных упругих волн, распростра-
няющихся в протяженных цилиндрах кольцевого поперечного сечения. В дан-
ном исследовании указанная трехфакторная модель неоднородности применена
для построения базисного набора аналитических частных решений уравнений
математической модели в случае неосесимметричного волнового процесса в про-
тяженных цилиндрах кольцевого поперечного сечения.

1. Постановка задачи. Рассматривается цилиндрический волновод, в по-
перечном сечении представляющий собой концентрическое круговое кольцо с
внутренним R1 и внешним R2 радиусами. Вводится безразмерная, нормирован-
ная параметром R∗ = (R1 +R2)/2, цилиндрическая система координат Orθz, в
которой волновод занимает область

V = {r ∈ [1− h, 1 + h] , θ ∈ [−π, π] , z ∈ (−∞,∞)} ,

где h = (R2 −R1)/(R1 +R2) (0 < h < 1). Изотропный материал волновода по-
лагается функционально-неоднородным

λ (r) = C∗λ̃ (r) , µ (r) = C∗µ̃ (r) , ρ (r) = ρ∗ρ̃ (r) ,

где
λ̃ (r) > 0, µ̃ (r) > 0, ρ̃ (r) > 0 (r ∈ [1− h, 1 + h]) . (1)

Здесь параметры C∗ = const и ρ∗ = const имеют размерность соответственно
упругих модулей Ламе и плотности, а функциональные законы λ̃ (r), µ̃ (r), ρ̃ (r)

87



А.И. Дзундза, Н.Ю. Мельничук, И.А. Моисеенко, Р.Н. Нескородев

полагаются произвольными в пределах допустимости варьирования значений
физико-механических характеристик и относятся к классу C2 (1− h, 1 + h).

Исследование распространяющихся вдоль осиOz с круговой частотой ω, нор-
мированным параметром R∗ продольным волновым числом k (k ∈ C) и окруж-
ным волновым числом τ (τ ∈ N) неосесимметричных нормальных упругих волн
реализуется в рамках пространственной линейной математической модели вол-
новой динамики. Для построения решений указанной модели допускается при-
менение метода разделения переменных.

Вводится замена переменных r = η (x) = 1+hx, где x ∈ [−1, 1] – обобщенная
кольцевая координата [5]. В новой системе координат Oxθz соотношения (1)
переписываются следующим образом:

λ̃ (x) > 0, µ̃ (x) > 0, ρ̃ (x) > 0 (x ∈ [−1, 1]) . (2)

Соотношения математической модели в матрично-векторном виде получают сле-
дующий вид:

U (x, θ, z, t) = exp (−i ω t+ i k z) PU T
(τ)
U (θ) Ũ(τ) (x) ,

Σ (x, θ, z, t) = exp (−i ω t+ i k z) PΣ T
(τ)
Σ (θ) Σ̃(τ) (x) ;

(3)

U (x, θ, z, t) = [ur (x, θ, z, t) , uθ (x, θ, z, t) , uz (x, θ, z, t)]
T ,

Σ (x, θ, z, t) = [σrr (x, θ, z, t) , σθθ (x, θ, z, t) , σzz (x, θ, z, t) ,

σθz (x, θ, z, t) , σrz (x, θ, z, t) , σrθ (x, θ, z, t)]
T ;

(4)

Ũ(τ) (x) =
[
ũ(τ)r (x) , ũ

(τ)
θ (x) , ũ(τ)z (x)

]T
,

Σ̃(τ) (x) =
[
σ̃(τ)rr (x) , σ̃

(τ)
θθ (x) , σ̃(τ)zz (x) , σ̃

(τ)
θz (x) , σ̃(τ)rz (x) , σ̃

(τ)
rθ (x)

]T
.

(5)

Здесь ũ(τ)s (x) (s = r, θ, z) и σ̃
(τ)
s (x) (s = rr, θθ, zz, θz, rz, rθ) – вещественные ра-

диальные амплитудные составляющие соответствующих компонент волнового
процесса; PU и PΣ – квадратные диагональные матрицы комплексной норми-
ровки с элементами

[PU ]1,1 = [PU ]2,2 = 1, [PU ]3,3 = i,

[PΣ]j,j = 1 (j = 1, 2, 3, 6) , [PΣ]j,j = i (j = 4, 5) ;
(6)

T
(τ)
U (θ) и T

(τ)
Σ (θ) – квадратные диагональные функциональные матрицы зави-

симости от угловой координаты с элементами[
T

(τ)
U (θ)

]
1,1

=
[
T

(τ)
U (θ)

]
3,3

= cos (τθ) ,
[
T

(τ)
U (θ)

]
2,2

= sin (τθ) ,[
T

(τ)
Σ (θ)

]
j,j

= cos (τθ) (j = 1, 2, 3, 5) ,[
T

(τ)
Σ (θ)

]
j,j

= sin (τθ) (j = 4, 6) .

(7)
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Векторные функции Σ̃(τ) (x) и Ũ(τ) (x) связаны дифференциальным соотно-
шением

Σ̃(τ) (x) = G̃ (x)
(
M̃(τ) (x) � Ũ(τ) (x)

)
, (8)

где G̃ (x) – матрица упругих модулей Гука размерности 6 × 6 с отличными от
нуля элементами[

G̃ (x)
]
n,m

= λ̃ (x) (n,m = 1, 2; 2, 1; 1, 3; 3, 1; 2, 3; 3, 2) ,[
G̃ (x)

]
j,j

= λ̃ (x) + 2µ̃ (x)
(
j = 1, 3

)
,
[
G̃ (x)

]
j,j

= µ̃ (x)
(
j = 4, 6

)
;

(9)

M̃(τ) (x) – матричный размерности 6× 3 дифференциальный оператор с отлич-
ными от нуля элементами[

M̃(τ) (x)
]
1,1

= h−1dx,
[
M̃(τ) (x)

]
2,1

= η(x)−1,
[
M̃(τ) (x)

]
2,2

= τη(x)−1,[
M̃(τ) (x)

]
3,3

= −k,
[
M̃(τ) (x)

]
4,2

= k,
[
M̃(τ) (x)

]
4,3

= −τη(x)−1,[
M̃(τ) (x)

]
5,1

= k,
[
M̃(τ) (x)

]
5,3

= h−1dx,[
M̃(τ) (x)

]
6,1

= −τη(x)−1,
[
M̃(τ) (x)

]
6,2

= h−1dx − η(x)−1.

(10)

Уравнения движения преобразуются к виду

D̃(τ) (x) � Ũ(τ) (x) = O, (11)

где O – нулевой вектор-столбец размерности 3; D̃(τ) (x) – матричный размерно-
сти 3× 3 дифференциальный оператор с элементами[

D̃(τ) (x)
]
mm

= d2x + f̃ (1)mm (x) dx + f̃ (2)mm (x)
(
m = 1, 3

)
,[

D̃(τ) (x)
]
mn

= f̃ (1)mn (x) dx + f̃ (2)mn (x)
(
m ̸= n = 1, 3

)
.

Здесь

f̃
(1)
1 1 (x) =

h

η (x)
+
λ′ (x) + 2µ′ (x)

λ (x) + 2µ (x)
,

f̃
(2)
11 (x) = − h2

η(x)2
+
h2
(
Ω2ρ̃ (x)− µ̃ (x)

(
k2 + τ2η(x)−2

))
+ hη(x)−1λ̃′ (x)

λ̃ (x) + 2µ̃ (x)
,

f̃
(1)
12 (x) =

hτ

η (x)

(
1− µ̃ (x)

λ̃ (x) + 2µ̃ (x)

)
,

f̃
(2)
12 (x) = − hτ

η(x)2

(
h+

hµ̃ (x)− η (x) λ̃′ (x)

λ̃ (x) + 2µ̃ (x)

)
,
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f̃
(1)
13 (x) = −hk

(
1− µ̃ (x)

λ̃ (x) + 2µ̃ (x)

)
, f̃

(2)
13 (x) = − hkλ̃′ (x)

λ̃ (x) + 2µ̃ (x)
,

f̃
(1)
21 (x) = − hτ

η (x)

(
1− λ̃ (x)

µ̃ (x)

)
, f̃

(2)
21 (x) = − hτ

η(x)2

(
3h+

hλ̃ (x) + η (x) µ̃′ (x)

µ̃ (x)

)
,

f̃
(1)
22 (x) =

h

η (x)
+
µ̃′ (x)

µ̃ (x)
,

f̃
(2)
22 (x) = h

(
h

(
Ω2 ρ̃ (x)

µ̃ (x)
− k2

)
− µ̃′ (x)

η (x) µ̃ (x)
− h

η(x)2

(
1 + τ2

(
2 +

λ̃ (x)

µ̃ (x)

)))
,

f̃
(1)
23 (x) = 0, f̃

(2)
23 (x) = −h

2kτ

η (x)

(
1 +

λ̃ (x)

µ̃ (x)

)
,

f̃
(1)
31 (x) = hk

(
1 +

λ̃ (x)

µ̃ (x)

)
, f̃

(2)
31 (x) = hk

(
h

η (x)

(
1 +

λ̃ (x)

µ̃ (x)

)
+
µ̃′ (x)

µ̃ (x)

)
,

f̃
(1)
32 (x) = 0, f̃

(2)
32 (x) =

h2kτ

η (x)

(
1 +

λ̃ (x)

µ̃ (x)

)
,

f̃
(1)
33 (x) =

h

η (x)
+
µ̃′ (x)

µ̃ (x)
, f̃

(2)
33 (x) = h2

(
Ω2 ρ̃ (x)

µ̃ (x)
− k2

(
2 +

λ̃ (x)

µ̃ (x)

)
− τ2

η(x)2

)
,

Ω2 = ρ∗R
2
∗ω

2/C∗ – безразмерная приведенная частота.
Математическая модель (2) – (11) дополняется граничными условиями для

случая свободного
σ̃(τ)s (±1) = 0 (s = rr, rz, rθ) (12)

либо жестко закрепленного

ũ(τ)s (±1) = 0 (s = r, θ, z) (13)

волновода.
2. Модель радиальной неоднородности. Следуя работе [4] вводятся: де-

картова система координатOxy и комплексная переменная ξ = x+iy; произволь-
ные функции ψj (ξ)

(
j = 1, 3

)
, аналитические в области |ξ| < δ (δ > 1); два типа

моделей неоднородности для функциональных законов (2), аналогичных пред-
ставленным в указанной работе для случая осесимметричных волн продольно-
сдвигового типа.

Аналитическая модель неоднородности. Применима в случае, когда функции
λ̃ (x), µ̃ (x) и ρ̃ (x) допускают аналитическое продолжение в аналитические в
области |ξ| < δ (δ > 1) функции. Соотношения модели имеют вид

ψ1 (ξ) = λ̂ (ξ) , ψ2 (ξ) = µ̂ (ξ) , ψ3 (ξ) = ρ̂ (ξ) . (14)
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Численная модель неоднородности. Имеет два альтернативных вида и реа-
лизуется с применением полиномиальных аппроксимаций так:

ψ1 (x) ≈
µ̃ (x)

λ̃ (x) + 2µ̃ (x)
, ψ2 (x) ≈

ρ̃ (x)

λ̃ (x) + 2 µ̃ (x)
,

ψ3 (x) ≈ ln
(
λ̃ (x) + 2µ̃ (x)

)
(x ∈ [−1, 1]) ;

(15-А)

ψ1 (x) ≈ λ̃ (x)/µ̃ (x), ψ2 (x) ≈ ρ̃ (x)/µ̃ (x), ψ3 (x) ≈ ln (µ̃ (x))

(x ∈ [−1, 1]) .
(15-Б)

Здесь

ψj (ξ) =
N∑

n=0

a(j)n ξn
(
j = 1, 3

)
. (16)

В работе [4] приведены условия определения порядка полиномов в соотноше-
ниях (16), а также для каждого типа модели неоднородности сформулированы
достаточные условия несильной радиальной неоднородности, при выполнении
которых дифференциальный оператор D̃(τ) (x) допускает аналитическое про-
должение на плоскость комплексной переменной ξ в дифференциальный опе-
ратор D̂(τ) (ξ) с аналитическими в области |ξ| < δ (δ > 1) функциональными
коэффициентами f̂ (j)nm (ξ)

(
j = 1, 2; n,m = 1, 3

)
.

В случае соотношений (14) представления для f̂ (j)nm (ξ) имеют вид

f̂
(1)
11 (ξ) = h η(ξ)−1 (χ1 (ξ) + 2χ2 (ξ)) + χ7 (ξ) + 2χ8 (ξ) , (17)

f̂
(2)
11 (ξ) = −h η(ξ)−2

(
h
(
χ1 (ξ) +

(
2 + τ2 + k2η(ξ)2

)
χ2 (ξ)

)
−

−η (ξ)
(
hΩ2η (ξ)χ3 (ξ) + χ7 (ξ)

))
,

f̂
(1)
12 (ξ) = h τ η(ξ)−1 (χ1 (ξ) + χ2 (ξ)) ,

f̂
(2)
12 (ξ) = −h τ η(ξ)−2 (h (χ1 (ξ) + 3χ2 (ξ))− η (ξ)χ7 (ξ)) ,

f̂
(1)
13 (ξ) = −h k (χ1 (ξ) + χ2 (ξ)) , f̃

(2)
13 (ξ) = −hkχ7 (ξ) ,

f̂
(1)
21 (ξ) = −hτη(ξ)−1 (χ4 (ξ) + χ5 (ξ)) ,

f̂
(2)
21 (ξ) = −hτη(ξ)−2 (h (χ4 (ξ) + 3χ5 (ξ)) + η (ξ)χ11 (ξ)) ,

f̂
(1)
22 (ξ) = hη(ξ)−1χ5 (ξ) + χ11 (ξ) ,

f̂
(2)
22 (ξ) = −hη(ξ)−2

(
h
(
τ2χ4 (ξ) +

(
1 + 2τ2 + k2η(ξ)2

)
χ5 (ξ)

)
+

+η (ξ)
(
χ11 (ξ)− hΩ2η (ξ)χ6 (ξ)

))
,

f̂
(1)
23 (ξ) = 0, f̂

(2)
23 (ξ) = h2kτη(ξ)−1 (χ4 (ξ) + χ5 (ξ)) ,
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f̂
(1)
31 (ξ) = hk (χ4 (ξ) + χ5 (ξ)) ,

f̂
(2)
31 (ξ) = hk

(
hη(ξ)−1 (χ4 (ξ) + χ5 (ξ)) + χ11 (ξ)

)
,

f̂
(1)
32 (ξ) = 0, f̂

(2)
32 (ξ) = h2kτη(ξ)−1 (χ4 (ξ) + χ5 (ξ)) ,

f̂
(1)
33 (ξ) = h η(ξ)−1 χ5 (ξ) + χ11 (ξ) ,

f̂
(2)
33 (ξ) = −h2

(
k2χ4 (ξ) +

(
2k2 + τ2η(ξ)−2

)
χ5 (ξ)− Ω2χ6 (ξ)

)
,

где

χj (ξ) = f1 (ξ)ψj (ξ)
(
j = 1, 3

)
, χj+3 (ξ) = f2 (ξ)ψj (ξ)

(
j = 1, 3

)
,

χj+6 (ξ) = f1 (ξ) ψ
′
j (ξ)

(
j = 1, 3

)
, χj+9 (ξ) = f2 (ξ)ψ

′
j (ξ)

(
j = 1, 3

)
,

f1 (ξ) = (ψ1 (ξ) + 2ψ2 (ξ))
−1, f2 (ξ) = ψ2(ξ)

−1.

(18)

В случае соотношений (15-А) либо (15-Б) представления для f̂ (j)nm (ξ) имеют
соответственно такой вид:

f̂
(1)
11 (ξ) = hη(ξ)−1 + ψ′

3 (ξ) ,

f̂
(2)
11 (ξ) = −h η(ξ)−2

(
h+ h

(
τ2 + k2η(ξ)2

)
ψ1 (ξ) + 2η (ξ)ψ′

1 (ξ)−

−hΩ2η(ξ)2ψ2 (ξ)− η (ξ)ψ′
3 (ξ) + 2η (ξ)ϕ1 (ξ)

)
,

f̂
(1)
12 (ξ) = hτη(ξ)−1 (1− ψ1 (ξ)) ,

f̂
(2)
12 (ξ) = −hτη(ξ)−2 (h (1 + ψ1 (ξ)) + η (ξ)

(
2ψ′

1 (ξ)− ψ′
3 (ξ) + 2ϕ1 (ξ)

))
,

f̂
(1)
13 (ξ) = hk (ψ1 (ξ)− 1) ,

f̂
(2)
13 (ξ) = hk

(
2ψ′

1 (ξ)− ψ′
3 (ξ) + 2ϕ (ξ)

)
,

f̂
(1)
21 (ξ) = hτη(ξ)−1 (1− χ1 (ξ)) ,

f̂
(2)
21 (ξ) = −hτη(ξ)−2 (h+ η (ξ)ψ′

3 (ξ) + hχ1 (ξ) + η (ξ)χ3 (ξ)
)
,

f̂
(1)
22 (ξ) = hη(ξ)−1 + ψ′

3 (ξ) + χ3 (ξ) ,

f̂
(2)
22 (ξ) = −h η(ξ)−2

(
h
(
1 + k2η(ξ)2

)
+ η (ξ)ψ′

3 (ξ)+

+hτ2χ1 (ξ)− hΩ2η(ξ)2χ2 (ξ) + η (ξ)χ3 (ξ)
)
,

f̂
(1)
23 (ξ) = 0, f̂

(2)
23 (ξ) = h2kτη(ξ)−1 (χ1 (ξ)− 1) ,

f̂
(1)
31 (ξ) = hk (χ1 (ξ)− 1) ,

f̂
(2)
31 (ξ) = hk

(
ψ′

3 (ξ) + hη(ξ)−1 (χ1 (ξ)− 1) + χ3 (ξ)
)
,

f̂
(1)
32 (ξ) = 0, f̂

(2)
32 (ξ) = h2kτη(ξ)−1 (χ1 (ξ)− 1) ,

f̂
(1)
33 (ξ) = hη(ξ)−1 + ψ′

3 (ξ) + χ3 (ξ) ,

f̂
(2)
33 (ξ) = −h2

(
τ2η(ξ)−2 + k2χ1 (ξ)− Ω2χ2 (ξ)

)
;

(19-А)

92



Неосесимметричные нормальные волны с многофакторной функциональной неоднородностью

f̂
(1)
11 (ξ) = hη(ξ)−1 (2χ1 (ξ) + χ2 (ξ)) + χ4 (ξ) + 2χ5 (ξ) + χ6 (ξ) ,

f̂
(2)
11 (ξ)=−h

(
h
((
η(ξ)−2(2+τ2)+k2)χ1 (ξ)+η(ξ)

−2χ2 (ξ)−Ω2χ3(ξ)
)
−

−η(ξ)−1 (χ4 (ξ) + χ6 (ξ))
)
,

f̂
(1)
12 (ξ) = hτη(ξ)−1 (χ1 (ξ) + χ2 (ξ)) ,

f̂
(2)
12 (ξ) = −hτη(ξ)−1

(
hη(ξ)−1 (3χ1 (ξ) + χ2 (ξ))− χ4 (ξ)− χ6 (ξ)

)
,

f̂
(1)
13 (ξ) = −hk (χ1 (ξ) + χ2 (ξ)) , f̃

(2)
13 (ξ) = −hk (χ4 (ξ) + χ6 (ξ)) ,

f̂
(1)
21 (ξ) = hτη(ξ)−1 (1 + ψ1 (ξ)) ,

f̂
(2)
21 (ξ) = −hτη(ξ)−1

(
hη(ξ)−1 (3 + ψ1 (ξ)) + ψ′

3 (ξ)
)
,

f̂
(1)
22 (ξ) = hη(ξ)−1 + ψ′

3 (ξ) ,

f̂
(2)
22 (ξ) = −h

(
hη(ξ)−2 (1 + τ2 (2 + ψ1 (ξ))

)
+

+h
(
k2 − Ω2ψ2 (ξ)

)
+ η(ξ)−1ψ′

3 (ξ)
)
,

f̂
(1)
23 (ξ) = 0, f̂

(2)
23 (ξ) = h2kτη(ξ)−1 (1 + ψ1 (ξ)) ,

f̂
(1)
31 (ξ) = hk (1 + ψ1 (ξ)) ,

f̂
(2)
31 (ξ) = hk

(
hη(ξ)−1 (1 + ψ1 (ξ)) + ψ′

3 (ξ)
)
,

f̂
(1)
32 (ξ) = 0, f̂

(2)
32 (ξ) = h2kτη(ξ)−1 (1 + ψ1 (ξ)) ,

f̂
(1)
33 (ξ) = hη(ξ)−1 + ψ′

3 (ξ) ,

f̂
(2)
33 (ξ) = −h2

(
k2 (ψ1 (ξ) + 2)− Ω2ψ2 (ξ) + τ2η(ξ)−2

)
.

(19-Б)

В соотношениях (19-А) и (19-Б) используются вспомогательные функции, ко-
торые соответственно определены так:

χ1 (ξ) = ψ1(ξ)
−1, χ2 (ξ) = ψ1(ξ)

−1ψ2 (ξ) ,

χ3 (ξ) = ψ1(ξ)
−1ψ′

1 (ξ) , ϕ1 (ξ) = ψ1 (ξ)ψ
′
3 (ξ) ;

(20-А)

χ1 (ξ) = (2 + ψ1 (ξ))
−1, χ2 (ξ) = χ1 (ξ)ψ1 (ξ) ,

χ3 (ξ) = χ1 (ξ)ψ2 (ξ) , χ4 (ξ) = χ1 (ξ)ψ
′
1 (ξ) ,

χ5 (ξ) = χ1 (ξ)ψ
′
3 (ξ) , χ6 (ξ) = χ1 (ξ)ψ1 (ξ)ψ

′
3 (ξ) .

(20-Б)

3. Базисное частное решение. В рамках представленной соотношениями
(14), (15-А), (15-Б) модели неоднородности при выполнении соответствующих
достаточных условий несильной радиальной неоднородности [4] дифференци-
альное уравнение (11) получает следующий вид:

D̂(τ) (ξ) � Û(τ) (ξ) = O (|ξ| < δ) . (21)
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Известно [6], что матричное дифференциальное уравнение (21) имеет представ-
ленные в векторном виде частные решения

Û(τ,particular,q) (ξ) =

û
(τ,particular,q)
r (ξ)

û
(τ,particular,q)
θ (ξ)

û
(τ,particular,q)
z (ξ)

 (q = 1, 6
)

(22)

с аналитическими в области |ξ|<δ (δ > 1) элементами û(τ,particular,q)
s (ξ) (s = r, θ, z;

q = 1, 6
)
. Указанные векторные решения строятся в виде разложений их элемен-

тов в области |ξ| < δ (δ > 1). Водятся представления

ψj (ξ) =
∞∑
n=0

a(j)n ξn
(
j = 1, 3

)
, ϕ1 (ξ) =

∞∑
n=0

g(1)n ξn,

χj (ξ) =
∞∑
n=0

b(j)n ξn
(
j = 1, 12

)
,

û(τ,particular,q)
s (ξ) =

∞∑
n=0

d(s,q)n ξn
(
s = r, θ, z; q = 1, 6

)
.

(23)

Здесь
{
a
(j)
n

}∞

n=0

(
j = 1, 3

)
– определяемые из соотношений (14) в случае анали-

тической модели неоднородности, из соотношений (15-А), (16) либо (15-Б), (16)
в случае численной модели неоднородности наборы коэффициентов;

{
g
(1)
n

}∞

n=0
и{

b
(j)
n

}∞

n=0

(
j = 1, 12

)
– наборы коэффициентов, определяемые из очевидных яв-

ных рекуррентных соотношений, полученных на основании представлений (18),
либо (20-А), либо (20-Б);

{
d
(s,q)
n

}∞

n=0

(
s = r, θ, z; q = 1, 6

)
– подлежащие нахож-

дению наборы коэффициентов. Следует отметить, что в случае представления
функций ψj (ξ)

(
j = 1, 3

)
полиномами порядка N , в разложениях (23) указан-

ных функций, а также функции ϕ1 (ξ), следует положить a
(j)
n = 0 ( j = 1, 3;

n = N + 1,∞ ), g(1)n = 0
(
n = 2N,∞

)
.

После подстановки разложений (23) в представление (22), а также соответ-
ственно выбранной модели неоднородности в соотношения (17), либо (19-А),
либо (19-Б), дифференциальное уравнение (21) преобразуется в однородное век-
торное функциональное уравнение

F̂(τ) (ξ) = O (|ξ| < δ) . (24)

Здесь

[
F̂(τ) (ξ)

]
m
=

∞∑
p=0

w(m)
p

({
d(s,q)n

}p

n=0
,
{
a(j)n

}∞

n=0
,
{
b(j)p

}∞

n=0
,
{
g(1)p

}∞

n=0

)
ξp
(
m = 1, 3

)
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аналитические в области |ξ| < δ (δ > 1) функции. На основании свойств ана-
литических функций из уравнения (24) получается последовательность систем
линейных алгебраических уравнений

w(m)
p

({
d(s,q)n

}p

n=0
,
{
a(j)n

}∞

n=0
,
{
b(j)p

}∞

n=0
,
{
g(1)p

}∞

n=0

)
= 0

(
m = 1, 3

)
,

( p = 0, 1, 2, ...)
(25)

для определения искомых наборов коэффициентов
{
d
(s,q)
n

}∞

n=0(
s = r, θ, z; q = 1, 6

)
.

При p = 0 и p = 1 из уравнений (25) для коэффициентов разложений эле-
ментов векторных частных решений Û(τ,particular,q) (ξ)

(
q = 1, 6

)
определяются

начальные условия единого для всех представленных вариантов модели неодно-
родности вида:{

d
(r,1)
0 = 1, d

(r,1)
1 = 0, d

(θ,1)
0 = 0, d

(θ,1)
1 = 0, d

(z,1)
0 = 0, d

(z,1)
1 = 0

}
,{

d
(r,2)
0 = 0, d

(r,2)
1 = 1, d

(θ,2)
0 = 0, d

(θ,2)
1 = 0, d

(z,2)
0 = 0, d

(z,2)
1 = 0

}
,{

d
(r,3)
0 = 0, d

(r,3)
1 = 0, d

(θ,3)
0 = 1, d

(θ,3)
1 = 0, d

(z,3)
0 = 0, d

(z,3)
1 = 0

}
,{

d
(r,4)
0 = 0, d

(r,4)
1 = 0, d

(θ,4)
0 = 0, d

(θ,4)
1 = 1, d

(z,4)
0 = 0, d

(z,4)
1 = 0

}
,{

d
(r,5)
0 = 0, d

(r,5)
1 = 0, d

(θ,5)
0 = 0, d

(θ,5)
1 = 0, d

(z,5)
0 = 1, d

(z,5)
1 = 0

}
,{

d
(r,6)
0 = 0, d

(r,6)
1 = 0, d

(θ,6)
0 = 0, d

(θ,6)
1 = 0, d

(z,6)
0 = 0, d

(z,6)
1 = 1

}
.

(26)

При p ≥ 2 из неоднородных линейных систем уравнений (25) получаются яв-
ные рекуррентные соотношения для определения искомых коэффициентов d(s, q)p(
s = r, θ, z; q = 1, 6

)
. В случае аналитической модели неоднородности (14), (17),

(18) рекуррентные соотношения имеют вид:

d(r,q)p = − 1

p (p− 1)

(
2h (p− 1) (p− 2) d

(r,q)
p−1 + h2 (p− 2) (p− 3) d

(r,q)
p−2+ (27)

+

p−4∑
j=0

(
h4
(
Ω2b

(3)
p−4−j − k2b

(2)
p−4−j

)
d
(r,q)
j − kh3b

(7)
p−4−jd

(z,q)
j

)
+

+

p−3∑
j=0

(
h2
(
2h
(
Ω2b

(3)
p−3−j − k2b

(2)
p−3−j

)
+ (j + 1) b

(7)
p−3−j + 2jb

(8)
p−3−j

)
d
(r,q)
j +

+τh2b
(7)
p−3−jd

(θ,q)
j − kh2

(
hj
(
b
(1)
p−3−j + b

(2)
p−3−j

)
+ 2b

(7)
p−3−j

)
d
(z,q)
j

)
+

+

p−2∑
j=0

((
h2
(
Ω2b

(3)
p−2−j −

(
k2 + τ2 − 2j + 2

)
b
(2)
p−2−j + (j − 1) b

(1)
p−2−j

)
+
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+h
(
(2j + 1) b

(7)
p−2−j + 4jb

(8)
p−2−j

))
d
(r,q)
j +

+hτ
(
h
(
(j − 1) b

(1)
p−2−j + (j − 3) b

(2)
p−2−j

)
+ b

(7)
p−2−j

)
d
(θ, q)
j −

−hk
(
2hj

(
b
(1)
p−2−j + b

(2)
p−2−j

)
+ b

(7)
p−2−j

)
d
(z, q)
j

)
+

+

p−1∑
j=0

(
j
(
h
(
b
(1)
p−1−j + 2b

(2)
p−1−j

)
+ b

(7)
p−1−j + 2b

(8)
p−1−j

)
d
(r,q)
j +

+τhj
(
b
(1)
p−1−j + b

(2)
p−1−j

)
d
(θ,q)
j − khj

(
b
(1)
p−1−j + b

(2)
p−1−j

)
d
(z,q)
j

))
,

d(θ,q)p = − 1

p (p− 1)

(
2h (p− 1) (p− 2) d

(θ,q)
p−1 + h2 (p− 2) (p− 3) d

(θ,q)
p−2 +

+

p−4∑
j=0

(
h4
(
Ω2b

(6)
p−4−j − k2b

(5)
p−4−j

)
d
(θ,q)
j

)
+

+

p−3∑
j=0

(
h2
(
−τb(11)p−3−jd

(r,q)
j +

(
2h
(
Ω2b

(6)
p−3−j − k2b

(5)
p−3−j

)
+ (j − 1) b

(11)
p−3−j

)
d
(θ,q)
j +

+τkh
(
b
(4)
p−3−j + b

(5)
p−3−j

)
d
(z,q)
j

))
+

+

p−2∑
j=0

(
−h
(
τ
(
h
(
(j + 1) b

(4)
p−2−j + (j + 3) b

(5)
p−2−j

)
+ b

(11)
p−2−j

)
d
(r, q)
j −

−h
(
Ω2b

(6)
p−2−j +

(
j − 1− k2 − 2τ2

)
b
(5)
p−2−j − τ2b

(4)
p−2−j

)
+

+(2j − 1) b
(11)
p−2−j

)
d
(θ,q)
j − hτk

(
b
(4)
p−2−j + b

(5)
p−2−j

)
d
(z,q)
j

))
+

+

p−1∑
j=0

(
j
(
−hτ

(
b
(4)
p−1−j + b

(5)
p−1−j

)
d
(r,q)
j +

(
hb

(5)
p−1−j + b

(11)
p−1−j

)
d
(θ,q)
j

)) ,

d(z,q)p = − 1

p (p− 1)

(
2h (p− 1) (p− 2) d

(z,q)
p−1 + h2 (p− 2) (p− 3) d

(z,q)
p−2 +

+

p−4∑
j=0

(
h3
(
kb

(11)
p−4−jd

(r,q)
j + h

(
Ω2b

(6)
p−4−j − k2

(
b
(4)
p−4−j + 2b

(5)
p−4−j

))
d
(z,q)
j

))
+

+

p−3∑
j=0

(
h2
(
k
(
h (j + 1)

(
b
(4)
p−3−j + b

(5)
p−3−j

)
+ 2b

(11)
p−3−j

)
d
(r,q)
j +

+hτk
(
b
(4)
p−3−j + b

(5)
p−3−j

)
d
(θ,q)
j +
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+
(
2h
(
Ω2b

(6)
p−3−j − k2

(
b
(4)
p−3−j + 2 b

(5)
p−3−j

))
+ jb

(11)
p−3−j

)
d
(z,q)
j

))
+

+

p−2∑
j=0

(
h
(
k
(
h (2j + 1)

(
b
(4)
p−2−j + b

(5)
p−2−j

)
+ b

(11)
p−2−j

)
d
(r,q)
j +

+hτk
(
b
(4)
p−2−j + b

(5)
p−2−j

)
d
(θ,q)
j +

+
(
h
(
Ω2b

(6)
p−2−j − k2b

(4)
p−2−j −

(
2k2 + τ2 − j

)
b
(5)
p−2−j

)
+ 2jb

(11)
p−2−j

)
d
(z,q)
j

))
+

+

p−1∑
j=0

(
j
(
hk
(
b
(4)
p−1−j + b

(5)
p−1−j

)
d
(r,q)
j +

(
hb

(5)
p−1−j + b

(11)
p−1−j

)
d
(z,q)
j

))
(
p = 2, 3, ... ; q = 1, 6

)
.

Для численной модели неоднородности вида (15-А), (16), (19-А), (20-А) либо
(15-Б), (16), (19-Б), (20-Б), с учетом формально дополняющих разложения (23)
определений d(s,q)−2 = d

(s,q)
−1 = 0

(
s = r, θ, z; q = 1, 6

)
, рекуррентные соотношения

соответственно записываются так:

d(r,q)p = − 1

p (p− 1)

(
h (p− 1) (2p− 3) d

(r,q)
p−1 + h2 (p− 1) (p− 3) d

(r,q)
p−2+ (28-А)

+hτ (p− 1) d
(θ,q)
p−1 + h2τ (p− 3) d

(θ,q)
p−2 −

−hk (p− 1) d
(z,q)
p−1 − 2kh2 (p− 2) d

(z,q)
p−2 − kh3 (p− 3) d

(z,q)
p−3 +

+

p−4∑
j=0

(
h4
(
Ω2a

(2)
p−4−j − k2a

(1)
p−4−j

)
d
(r,q)
j + 2kh3g

(1)
p−4−jd

(z,q)
j

)
+

+

p−3∑
j=0

(
−h2

(
−2
(
h
(
Ω2a

(2)
p−3−j − k2a

(1)
p−3−j

)
− g

(1)
p−3−j

)
d
(r,q)
j +

+2τg
(1)
p−3−jd

(θ,q)
j + k

(
h (j − 2p+ 6) a

(1)
p−3−j−

−h (j − p+ 3) a
(3)
p−3−j − 4g

(1)
p−3−j

)
d
(z,q)
j

))
+

+

p−2∑
j=0

(
−h
(
−
(
h
(
Ω2a

(2)
p−2−j −

(
k2 + τ2 + 2p− 2j − 4

)
a
(1)
p−2−j+

+(j + 1) (p− j − 2) a
(3)
p−2−j

)
− 2g

(1)
p−2−j

)
d
(r,q)
j −

−τ
(
h
(
(j − 2p+ 3) a

(1)
p−2−j − (j − p+ 2) a

(3)
p−2−j

)
− 2g

(1)
p−2−j

)
d
(θ,q)
j +

+2k
(
h
(
(j − 2p+ 4) a

(1)
p−2−j − (j − p+ 2) a

(3)
p−2−j

)
− g

(1)
p−2−j

)
d
(z,q)
j

))
+
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+

p−1∑
j=0

(
−
(
j (j − p) a

(3)
p−j + h (−p+ j + 1)

(
(2j + 1) a

(3)
p−1−j − 2a

(1)
p−1−j

))
d
(r,q)
j +

+hτ
(
(j − 2p+ 2) a

(1)
p−1−j − (j − p+ 1) a

(3)
p−1−j

)
d
(θ,q)
j −

−hk
(
(j − 2p+ 2) a

(1)
p−1−j − (j − p+ 1) a

(3)
p−1−j

)
d
(z,q)
j

)))
,

d(θ,q)p = − 1

p (p− 1)

(
hτ (p− 1) d

(r,q)
p−1 + h2τ (p− 3) d

(r,q)
p−2+

+h (p− 1) (2p− 3) d
(θ,q)
p−1 − h2

(
k2 − p2 + 4p− 3

)
d
(θ,q)
p−2 −

−2h3k2d
(θ,q)
p−3 − h4k2d

(θ,q)
p−4 − h2kτd

(z,q)
p−2 − h3kτd

(z,q)
p−3 +

+

p−4∑
j=0

(
h4Ω2b

(2)
p−4−jd

(θ,q)
j

)
+

+

p−3∑
j=0

(
h2
(
−τb(3)p−3−jd

(r,q)
j +

(
2hΩ2b

(2)
p−3−j + (j − 1) b

(3)
p−3−j

)
d
(θ,q)
j +

+hkτb
(1)
p−3−jd

(z,q)
j

)
+

+

p−2∑
j=0

(
−h
(
−τ
(
h (j − p+ 2) a

(3)
p−2−j − h (j + 1) b

(1)
p−2−j − b

(3)
p−2−j

)
d
(r,q)
j −

−
(
hΩ2b

(2)
p−2−j − hτ2b

(1)
p−2−j + (2j − 1) b

(3)
p−2−j−

−h (j − 1) (j − p+ 2) a
(3)
p−2−j

)
d
(θ,q)
j − hkτb

(1)
p−2−jd

(z,q)
j

)
+

+

p−1∑
j=0

(
hτ
(
(j − p+ 1) a

(3)
p−1−j − jb

(1)
p−1−j

)
d
(r,q)
j −

−
(
j (j − p) a

(3)
p−j − jb

(3)
p−1−j + h (2j − 1) (j − p+ 1) a

(3)
p−1−j

))
d
(θ,q)
j

))
,

d(z, q)p = − 1

p (p− 1)

(
−hk (p− 1) d

(r,q)
p−1 − h2k (2p− 3) d

(r,q)
p−2 − h3k (p− 2) d

(r,q)
p−3−

−h2τkd(θ,q)p−2 − h3τkd
(θ,q)
p−3 +

+h (p− 1) (2p− 3) d
(z,q)
p−1 + h2

(
(p− 2)2 − τ2

)
d
(z,q)
p−2 +

+

p−4∑
j=0

(
kh3b

(3)
p−4−jd

(r,q)
j + h4

(
Ω2b

(2)
p−4−j − k2b

(1)
p−4−j

)
d
(z,q)
j

)
+
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+

p−3∑
j=0

(
−h2

(
k
(
h (j − p+ 3) a

(3)
p−3−j − h (j + 1) b

(1)
p−3−j − 2b

(3)
p−3−j

)
d
(r,q)
j −

−hkτb(1)p−3−jd
(θ,q)
j −

(
2h
(
Ω2b

(2)
p−3−j − k2b

(1)
p−3−j

)
+ jb

(3)
p−3−j

)
d
(z,q)
j

))
+

+

p−2∑
j=0

(
−h
(
k
(
2h (j − p+ 2) a

(3)
p−2−j − h (2j + 1) b

(1)
p−2−j − b

(3)
p−2−j

)
d
(r,q)
j −

−hkτb(1)p−2−jd
(θ,q)
j −

(
−hj (j − p+ 2) a

(3)
p−2−j+

+h
(
Ω2b

(2)
p−2−j − k2b

(1)
p−2−j

)
+ 2jb

(3)
p−2−j

)
d
(z,q)
j

))
+

+

p−1∑
j=0

(
−kh

(
(j − p+ 1) a

(3)
p−1−j − jb

(1)
p−1−j

)
d
(r,q)
j −

−j
(
(j − p) a

(3)
p−j + 2h (j − p+ 1) a

(3)
p−1−j − b

(3)
p−1−j

)
d
(z,q)
j

))
(
p = 2, 3, ... ; q = 1, 6

)
;

d(r,q)p = − 1

p (p− 1)

(
2h (p− 1) (p− 2) d

(r,q)
p−1 + h2 (p− 2) (p− 3) d

(r,q)
p−2+ (28-Б)

+

p−4∑
j=0

(
h3
(
h
(
Ω2b

(3)
p−4−j − k2b

(1)
p−4−j

)
d
(r,q)
j − k

(
b
(4)
p−4−j + b

(6)
p−4−j

)
d
(z,q)
j

))
+

+

p−3∑
j=0

(
−h2

(
−
(
2h
(
Ω2b

(3)
p−3−j − k2b

(1)
p−3−j

)
+

+2jb
(5)
p−3−j + (j + 1)

(
b
(4)
p−3−j + b

(6)
p−3−j

))
d
(r,q)
j − τ

(
b
(4)
p−3−j + b

(6)
p−3−j

)
d
(θ,q)
j +

+k
(
hj
(
b
(1)
p−3−j + b

(2)
p−3−j

)
+ 2

(
b
(4)
p−3−j + b

(6)
p−3−j

))
d
(z,q)
j

))
+

+

p−2∑
j=0

(
−h
(
−
(
h
(
Ω2b

(3)
p−2−j −

(
k2 + τ2 − 2j + 2

)
b
(1)
p−2−j+

+(j − 1) b
(2)
p−2−j

)
+ (2j + 1)

(
b
(4)
p−2−j + b

(6)
p−2−j

)
+ 4jb

(5)
p−2−j

)
d
(r,q)
j −

−τ
(
h
(
(j − 3) b

(1)
p−2−j + (j − 1) b

(2)
p−2−j

)
+ b

(4)
p−2−j + b

(6)
p−2−j

)
d
(θ,q)
j +

+k
(
2hj

(
b
(1)
p−2−j + b

(2)
p−2−j

)
+ b

(4)
p−2−j + b

(6)
p−2−j

)
d
(z,q)
j

))
+

+

p−1∑
j=0

(
j
(
h
(
2b

(1)
p−1−j + b

(2)
p−1−j

)
+ b

(4)
p−1−j + 2b

(5)
p−1−j + b

(6)
p−1−j

)
d
(r,q)
j +
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+hτ
(
b
(1)
p−1−j + b

(2)
p−1−j

)
d
(θ,q)
j − hk

(
b
(1)
p−1−j + b

(2)
p−1−j

)
d
(z,q)
j

)))
,

d(θ,q)p = − 1

p (p− 1)

(
−hτ (p− 1) d

(r,q)
p−1 − h2τ (p+ 1) d

(r,q)
p−2+

+h (p− 1) (2p− 3) d
(θ,q)
p−1 − h2

(
k2 + 2τ2 − p2 + 4p− 3

)
d
(θ,q)
p−2 −

−2h3k2d
(θ,q)
p−3 − h4k2d

(θ,q)
p−4 + h2kτd

(z,q)
p−2 + h3kτd

(z,q)
p−3 +

+

p−4∑
j=0

(
h4Ω2a

(2)
p−4−jd

(θ,q)
j

)
+

+

p−3∑
j=0

(
h3
(
2Ω2a

(2)
p−3−jd

(θ,q)
j + τka

(1)
p−3−jd

(z,q)
j

))
+

+

p−2∑
j=0

(
−h2

(
τ
(
(j + 1) a

(1)
p−2−j − (j − p+ 2) a

(3)
p−2−j

)
d
(r,q)
j −

−
(
Ω2a

(2)
p−2−j − τ2a

(1)
p−2−j − (j − 1) (j − p+ 2) a

(3)
p−2−j

)
d
(θ,q)
j −

−kτa(1)p−2−jd
(z,q)
j

))
+

+

p−1∑
j=0

(
−hτ

(
ja

(1)
p−1−j − (j − p+ 1) a

(3)
p−1−j

)
d
(r,q)
j −

−
(
j (j − p) a

(3)
p−j + h (2j − 1) (j − p+ 1) a

(3)
p−1−j

))
d
(θ,q)
j

))
,

d(z,q)p = − 1

p (p− 1)

(
hk (p− 1) d

(r,q)
p−1 + h2k (2p− 3) d

(r,q)
p−2+

+h3k (p− 2) d
(r,q)
p−3+

+h2τkd
(θ,q)
p−2 + h3τkd

(θ,q)
p−3 + h (p− 1) (2p− 3) d

(z,q)
p−1 −

−h2
(
τ2 + 2k2 − (p− 2)2

)
d
(z,q)
p−2 − 4h3k2d

(z,q)
p−3 − 2h4k2d

(z,q)
p−3 +

+

p−4∑
j=0

(
h4
(
Ω2a

(2)
p−4−j − k2a

(1)
p−4−j

)
d
(z,q)
j

)
+

+

p−3∑
j=0

(
h3
(
k
(
(j + 1) a

(1)
p−3−j − (j − p+ 3) a

(3)
p−3−j

)
d
(r,q)
j +

+kτa
(1)
p−3−jd

(θ,q)
j + 2

(
Ω2a

(2)
p−3−j − k2a

(1)
p−3−j

)
d
(z,q)
j

))
+
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+

p−2∑
j=0

(
−h2

(
−k
(
(2j + 1) a

(1)
p−2−j − 2 (j − p+ 2) a

(3)
p−2−j

)
d
(r,q)
j −

−kτa(1)p−2−jd
(θ,q)
j −

−
(
Ω2a

(2)
p−2−j − k2a

(1)
p−2−j − j (j − p+ 2) a

(3)
p−2−j

)
d
(z,q)
j

))
+

+

p−1∑
j=0

(
kh
(
ja

(1)
p−1−j − (j − p+ 1) a

(3)
p−1−j

)
d
(r,q)
j −

−j
(
(j − p) a

(3)
p−j + 2h (j − p+ 2) a

(3)
p−1−j

)
d
(z,q)
j

)))
(
p = 2, 3, ... ; q = 1, 6

)
.

На основе набора векторных частных решений (22) можно определить иско-
мое базисное матричное решение уравнения (21) размерности 3×6 в следующем
виде

Û(τ,basic) (ξ) =
[
Û(τ,particular,1) (ξ) · · · Û(τ,particular,6) (ξ)

]
. (29)

4. Общее решение. С использованием базисного решения (29) можно опре-
делить общее решение уравнения (11) так:

Ũ(τ,general) (x) = Û(τ,basic) (x) A, (30)

где A – произвольный вектор-столбец размерности 6. Аналогично соотношению
(30) можно записать представление для вектора Σ̃(τ) (x) в виде

Σ̃(τ,general) (x) = Ŝ(τ) (x)A. (31)

Здесь
Ŝ(τ) (ξ) = Ĝ (ξ)

(
M̂(τ) (ξ) � Û(τ,basic) (ξ)

)
,

где Ĝ (ξ) и M̂(τ) (ξ) – аналитические продолжения на плоскость комплексной пе-
ременной ξ соответственно матрицы упругих модулей Гука G̃ (x) и матричного
дифференциального оператора M̃(τ) (x). В случае аналитической модели неод-
нородности (14), (17), (18) отличные от нуля элементы матрицы Ĝ (ξ) имеют
вид: [

Ĝ (ξ)
]
n,m

= ψ1 (ξ) (n,m = 1, 2; 2, 1; 1, 3; 3, 1; 2, 3; 3, 2) ,[
Ĝ (ξ)

]
j,j

= ψ1 (ξ) + 2ψ2 (ξ)
(
j = 1, 3

)
,[

Ĝ (ξ)
]
j,j

= ψ2 (ξ)
(
j = 4, 6

)
.

(32)
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Для численной модели неоднородности вида (15-А), (16) (19-А), (20-А) либо (15-
Б), (16) (19-Б), (20-Б) отличные от нуля элементы матрицы Ĝ (ξ) соответственно
определяются соотношениями:[

Ĝ (ξ)
]
n,m

=(1− 2ψ1 (ξ)) exp(ψ3(ξ)) (n,m=1, 2; 2, 1; 1, 3; 3, 1; 2, 3; 3, 2) ,[
Ĝ (ξ)

]
j,j

= exp (ψ3 (ξ))
(
j = 1, 3

)
,[

Ĝ (ξ)
]
j,j

= ψ1 (ξ) exp (ψ3 (ξ))
(
j = 4, 6

)
;

(33-А)

[
Ĝ (ξ)

]
n,m

= ψ1 (ξ) exp(ψ3 (ξ)) (n,m = 1, 2; 2, 1; 1, 3; 3, 1; 2, 3; 3, 2) ,[
Ĝ (ξ)

]
j,j

= (2 + ψ1 (ξ)) exp (ψ3 (ξ))
(
j = 1, 3

)
,[

Ĝ (ξ)
]
j,j

= exp (ψ3 (ξ))
(
j = 4, 6

)
.

(33-Б)

5. Дисперсионные соотношения. На основании граничных условий (12),
(13) с учетом представлений (30), (31) получаются дисперсионные уравнения
относительно безразмерного продольного волнового числа k и приведенной ча-
стоты Ω соответственно вида:

Φ
(τ)
Σ (k,Ω) = det



[
Ŝ(τ) (−1)

]
[1,5,6],[1..6][

Ŝ(τ) (1)
]
[1,5,6],[1..6]


 = 0; (34)

Φ
(τ)
U (k,Ω) = det

([
Û(τ,basic) (−1)

Û(τ,basic) (1)

])
= 0. (35)

6. Численный эксперимент. Исследование дисперсионных спектров, фа-
зовых и групповых скоростей бегущих изгибных волн (τ = 1) в свободном про-
тяженном полом цилиндре (h = 0.3) проводилось для однородного материала

λ̃ (x) = λ̃(Al), µ̃ (x) = µ̃(Al), ρ̃ (x) = ρ̃(Al) (36)

и различных случаев функционально неоднородного материала. Вид функци-
ональных законов неоднородности определялся задачей изучить влияние фак-
тора неоднородности по каждой физико-механической характеристике изотроп-
ного материала на свойства волнового процесса. Функциональные законы были
заданы следующим образом:

λ̃ (x) = λ̃(Al)
(
1 + 0, 2x3

)
, µ̃ (x) = µ̃(Al), ρ̃ (x) = ρ̃(Al); (37-А)

λ̃ (x) = λ̃(Al), µ̃ (x) = µ̃(Al)
(
1 + 0, 2x3

)
, ρ̃ (x) = ρ̃(Al); (37-Б)

λ̃ (x) = λ̃(Al), µ̃ (x) = µ̃(Al), ρ̃ (x) = ρ̃(Al)
(
1 + 0, 2x3

)
. (37-В)
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В приведенных соотношениях использовались физико-механические характе-
ристики алюминия

λ̃(Al) = 5, 91; µ̃(Al) = 2, 61; ρ̃(Al) = 2, 7;

C∗ = 1010 Н/м2; ρ∗ = 103 кг/м3.

Ниже волновод, задаваемый характеристиками (36), называется однородным, а
характеристиками (37-А) – (37-В) – соответственно неоднородным волноводом
А, Б или В типа.

Для неоднородных волноводов А–В типов в работе [4] применительно к слу-
чаю волн продольно-сдвигового типа подробно исследованы достаточные усло-
вия несильной радиальной неоднородности и погрешность аппроксимации. В
представленных ниже результатах численного эксперимента использованы сфор-
мулированные в указанной работе рекомендации по оптимальному выбору типа
и вида модели неоднородности: (14), (15-А), (15-Б).

Численный эксперимент проводился в области изменения параметров k ∈
[0, 30] и Ω ∈ [0, 30] для однородного волновода и неоднородных волноводов А–В
типов. Построенные фрагменты спектров представлены на рисунках 1–3.

Рис. 1. Спектр Рис. 2. Спектр Рис. 3. Спектр
однородного волновода неоднородного волновода неоднородного волновода

Б типа В типа

Прежде всего следует отметить, что неоднородность только по упругому моду-
лю λ̃ (x) визуально не сказывается на дисперсионной картине при сопоставле-
нии со спектром однородного волновода (рис. 1), и по этой причине указанный
спектр не приводится. При этом неоднородность по двум другим характеристи-
кам материала µ̃ (x) (рис. 2) и ρ̃ (x) (рис. 3) приводит к качественному изменению
спектральной картины для младших мод. Это, в частности, проявляется в зо-
нах асимптотической локализации первой моды по отношению к старшим модам
спектра в коротковолновой высокочастотной области спектра. Количественный
сопоставительный анализ поведения пяти младших мод фрагментов спектров
однородного и неоднородного волновода А–В типов проведен с использованием
функции сравнения парных по номеру в соответствующих спектрах мод

∆Ω(k) =
(
Ω(неоднородный) (k)− Ω(однородный) (k)

)
, (38)
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и представлен на рисунках 4–6. Порядковые номера сопоставляемых мод указа-
ны в нижней части рисунков. Отмеченный выше качественный вывод о слабом

Рис. 4. Сопоставление Рис. 5. Сопоставление Рис. 6. Сопоставление
парных мод спектров парных мод спектров парных мод спектров

неоднородного А типа и неоднородного Б типа и неоднородного В типа и
однородного волноводов однородного волноводов однородного волноводов

влиянии неоднородности только по упругому модулю λ̃ (x) имеет на представ-
ленных рисунках количественную оценку – значения функции ∆Ω(k) при со-
поставлении спектров однородного и неоднородного по модулю λ̃ (x) волновода
(рис. 4) в абсолютных значениях оказались на порядок меньшими, чем значения
указанной функции при сопоставлении однородного и неоднородных только по
модулю µ̃ (x) (рис. 5) и плотности ρ̃ (x) (рис. 6) волноводов. Эта закономерность
отмечена также в работе [4] при исследовании спектров для случая осесиммет-
ричных волн продольно-сдвигового типа. Для неоднородного только по модулю
λ̃ (x) волновода (рис. 4) следует указать на тенденцию смещения в коротковол-
новой высокочастотной области первой моды в область более высоких частот, а
второй моды – в область более низких частот. Указанная тенденция для неод-
нородных только по модулю µ̃ (x) (рис. 5) и плотности ρ̃ (x) (рис. 6) волноводов
наблюдается с точностью до наоборот.

Исследованию подлежали также фазовые и групповые скорости волн для
представленных на рисунках 1–3 фрагментов спектров. На рисунках 7–9 и 10–12
представлены соответственно графики нормированных величиной c∗ =

√
C∗/ρ∗

фазовых и для пяти младших мод групповых скоростей.

Рис. 7. Фазовые скорости Рис. 8. Фазовые скорости Рис. 9. Фазовые скорости
волн в однородном волн в неоднородном волн в неоднородном

волноводе волноводе Б типа волноводе В типа
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Рис. 10. Групповые Рис. 11. Групповые Рис. 12. Групповые
скорости волн в скорости волн в скорости волн в

однородном волноводе неоднородном волноводе неоднородном волноводе
Б типа В типа

Представленные на рисунках 7–12 графики иллюстрируют ранее отмеченные
тенденции характерной локализации асимптотического поведения в коротко-
волновой высокочастотной области двух низших мод по отношению к старшим
модам спектра.

Заключение. Результатами представленных в статье исследований явля-
ются построенные на основе апробированной в случае осесимметричных волн
продольно-сдвигового типа модели функциональной многофакторной радиаль-
ной неоднородности изотропного материала полого цилиндрического волновода
аналитические базисные частные решения для случая неосесимметричных вол-
новых процессов, а также полученные в процессе проведения численного экс-
перимента выводы о влиянии характера неоднородности на топологию диспер-
сионных спектров, фазовые и групповые скорости бегущих нормальных волн
указанного типа.
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МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ МАСШТАБНО-
СТРУКТУРНОГО РАЗРУШЕНИЯ ПРИ ОДНООСНОМ
НАГРУЖЕНИИ ТИТАНОВЫХ СПЛАВОВ ВО ВСЕМ
ДИАПАЗОНЕ АСИММЕТРИИ ЦИКЛА

Предлагаются выражения кривых многоцикловой усталости равной вероятности разрушения
по уровням микро-, мезо- и макродефектности при одночастотном осевом нагружении во всем
диапазоне возможных коэффициентов асимметрии цикла. Определяющие соотношения для
функции распределения вероятностей разрушения представляются операторами Гильберта-
Шмидта на процессе нагружения. Результаты расчетов для титановых сплавов ВТ1-0, ВТ3-1,
ВТ6, ВТ22, ПТ-3В, TC17 при различных циклических процессах растяжения, сжатия и
растяжения-сжатия, хорошо соответствуют известным экспериментальным данным.
Ключевые слова: масштабно-структурные уровни, хрупкое разрушение, кривые устало-
сти по уровням дефектности, асимметрия цикла нагружения, титановые сплавы, много-
цикловая усталость, гигацикловая усталость.

Введение. Данная работа посвящена методу исследования вероятности хруп-
кого разрушения и построению кривых усталости по уровням дефектности в
зависимости от коэффициента асимметрии цикла в областях много- и гигацик-
ловой усталости титановых сплавов. Рассматривается циклическое нагружение
следующего вида:

σ (τ) = σm + σa sinωτ, τ ∈ [0, t] , α =
σm
σa
, (1)

где σm – постоянная компонента напряжения, σa – амплитуда, ω – круговая
частота, ν – частота, ω = 2πν, N – число циклов нагружения, N = νt, α –
параметр асимметрии цикла, R – коэффициент асимметрии цикла, R = (α−
−1)/(α+ 1), α = (1 +R)/(1−R).

Исторически первым, применяемым для дисков и лопаток компрессоров и
турбин при температурах до 450◦C, являлся титановый сплав ВТ3-1, имеющий
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глобулярно-пластинчатую (α+ β)-структуру. Для более высоких температур до
550◦C разработаны сплавы ВТ6 (зарубежный аналог Ti-6Al-4V), ВТ-8 (ВТ8-1,
ВТ8М-1), ВТ-9, ВТ25, ВТ25У. Современным динамически развивающимся на-
правлением применения титановых сплавов является медицина: в частности, в
элементах дентальных имплантов, при эндопротезировании коленных и тазобед-
ренных суставов и фиксации позвоночников широко используется титановый
сплав ВТ6. Новые группы титановых сплавов были созданы для гидравличе-
ских труб (Ti-3Al-2.5V), воздуховодов (Ti-15V-3Cr-3Sn-3Al), шасси (Ti-10V-2Fe-
3Al) и хвостовых конусов (Ti-6Al-2Sn-4Zr-2Mo) летательных аппаратов и др.
В авиационной и автомобильной промышленности находят применение псев-
до α-сплавы: ОТ-4, ВТ18У (зарубежные аналоги IMI834, Ti1100), ВТ41. Одной
из основных задач повышения ресурса является создание регламентированной
структуры сплава.

По результатам известных исследований [1–20], процесс разрушения в ти-
тановых сплавах с смешанной глобулярно-пластинчатой двухфазной (α + β)-
структурой (например, для ВТ3-1, ВТ6, ВТ22 и ТС17) состоит в последова-
тельном прохождении следующих стадий: развитие нанодефектов в областях
структурных неоднородностей сплава с образованием наноструктурных частиц
сферическоий формы, по границам которых имеет место разупрочнение с фор-
мированием свободной поверхности (первый уровень), зарождение микротре-
щин, раскалывающих пластинчатую α-фазу с формированием гладких фасеток
скола (второй уровень), рост и слияние микротрещин в результате достиже-
ния их предельной концентрации с образованием мезотрещин (третий уровень)
и разрушению β-фазы с формированием речного узора (четвертый уровень),
дальнеийшему слиянию мезотрещин с образованием хрупких транскристаллит-
ных и зернограничных макротрещин размеров ансамблей β-фаз (пятый уро-
вень) и макротрещины-лидера некоторой характерной длины (шестой уровень)
при упругом макродеформировании.

По данным [13–15] процесс разрушения титановых сплавов ПТ-3В с псев-
до α-структуроий и ВТ1-0 с α-структуроий также включает: последовательное
развитие нанодефектов структуры, зарождение микротрещин, их рост и сли-
яние с образованием мезотрещин и их дальнейшими слияниями с формирова-
нием макротрещины-лидера. При этом в процессе разрушения «рыбьего глаза»
для сплава ПТ-3В не обнаруживается. Также стоит отметить, что усталостные
свойства титановых сплавов определяются состоянием поверхности образцов и
их структурой. Например, по данным [13, 14], пределы усталости сплава ВТ1-0
в ультрамелкозернистом состоянии, могут быть, в среднем, в 1.3 раза больше,
чем в крупнокристаллическом состоянии при одинаковых долговечностях.

В титановых сплавах многоцикловоий области (Nf ∈ (5 · 104, 106) циклов до
макроразрушения) микродефекты зарождаются, как правило, на поверхности
тела, в гигацикловоий области (Nf ∈ (106, 1011) циклов) – в основном, от гео-
метрических концентраторов в объеме тела: в матрице, на границах зерен, от
включения и др., с формированием области мелкогранулированной зернистой
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структуры (т.н. «рыбиий глаз»). Анализ изломов при разрушении сплава ВТ22
[12] показывает, что при Nf ≥ 107 циклов зарождение микротрещин происходит
в обьеме тела, очаг микроразрушения однотипен для всех долговечностей. Ин-
тересным является тот факт, что перемещение очага микроразрушения внутрь
тела зависит от коэффициента асимметрии цикла. Например, для ВТ6 (Ti-6Al-
4V) в диапазоне до Nf ≤ 108 циклов при симметричном нагружении разруше-
ние начинается на поверхности, при циклических растяжениях с увеличением
R в диапазоне R ∈ [0, 0.8) очаг микроразрушения уходит вглубь тела (до 0.25-
0.45 мм) [4].

Большинство элементов конструкций испытывают асимметричные нагруже-
ния, поэтому одним из актуальных вопросов является установление закономер-
ностей развития усталостного разрушения с учетом асимметрии цикла.

Экспериментальное построение кривых усталости при различных асиммет-
риях цикла сопряжено с большими финансовыми и трудовыми затратами; при
этом практически невозможно охватить все режимы нагружений. Вследствие
этого, для формирования синтетических данных при использовании технологий
искусственного интеллекта как для обучения, так и для тестирования, необходи-
мо применять математическое моделирование развития процессов разрушения.
Известные данные для титановых сплавов относятся, в основном, к кривым уста-
лости по макроразрушению при симметричных и пульсирующих циклах опреде-
ленных частот и при некоторых температурах [1–20]. Необходимость в продле-
нии ресурса конструкций требует определение зависимости усталостных свойств
материала от коэффициента асимметрии цикла в областях длительных сроков
службы и назначения остаточной долговечности в гигацикловой области.

На основе обработки накопленного обширного экспериментального матери-
ала в литературе формулируется ряд эмпирических зависимостей для кривых
многоцикловой усталости при нагружениях (1). К ним относятся следующие
хорошо известные соотношения:

• Гудмана-Гербера (N. Gerber, 1874 г., J. Goodman, 1919 г.) и Содерберга
(C.R. Soderberg, 1930 г.):

σa
σ−1(ω,Nf )

+
σm
σв

= 1,

где Nf – число циклов до разрушения, σв – временное сопротивление, σ−1 =
= σ−1(ω,Nf ) – кривая усталости при симметричном одночастотном нагружении;

• Гербера (W. Gerber, 1874 г.):

σa
σ−1(ω,Nf )

+

(
σm
σв

)2

= 1;

• Гербера-Марина (W. Gerber, 1874 г., J. Marin, 1942 г.):(
σa

σ−1 (ω,Nf )

)2

+

(
σm
σв

)2

= 1;
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• Дж. Х. Смита (J.H. Smith, 1910 г.):(
σa

σ−1(ω,Nf )

)(
1 +

σm
σв

)
= 1− σm

σв
;

• Одинга (И.А. Одинг, 1947 г.):(
σa

σ−1 (ω,Nf )

)2

+
σaσm

σ2−1(ω,Nf )
= 1;

• Серенсена-Кинасошвили (С.В. Серенсен, Р.С. Кинасошвили, 1975 г.):

σa
σ−1(ω,Nf )

= 1−
|σm|

(
σ−1 (ω,Nf )− σ0−1 (ω,Nf )

)
σ0−1 (ω,Nf )σ−1 (ω,Nf )

,

где σ0−1 = σ0−1(ω,Nf ) – кривая усталости при пульсирующем цикле;

• Хейвуда (R.W. Haywood, 1979 г.):

σa
σв

=

(
1− σm

σв

)(
σ−1(ω,Nf )

σв
+
σm
3σв

(
2 +

σm
σв

)(
1−

σ−1(ω,Nf )

σв

))
.

Известные критерии усталости строятся на характеристиках статической проч-
ности и циклической прочности при симметричном и пульсирующем циклах.

Для кривых усталости при симметричном одночастотном нагружении σ−1 =
= σ−1(ω,Nf ) применяется уравнение Баскина (O.H. Basquin, 1910 г.):

σ−1 (ω,Nf ) = C (ω)N−α(ω),

где C = C (ω) , α = α(ω) – материальные функции, зависящие от частоты. Для
титановых сплавов известные значения α лежат в интервале α ∈ [0.05− 0.17].

В современной литературе характеристики усталости рассматриваются как
случайные величины. Для построения кривых усталости равной вероятности
разрушения используются логарифмически нормальное распределение и рас-
пределение Вейбулла (W. Weibull, 1939 г.) [21].

В данной работе процесс усталостного разрушения рассматривается как иерар-
хический случайный процесс на микро-, мезо-, макроуровне, и строятся кривые
усталости равной вероятности разрушения по уровням дефектности во всем диа-
пазоне асимметрии цикла, кроме R ∈ [0.5, 1]. Анализ опытных данных по цик-
лическому растяжению с коэффициентами R ∈ [0.5, 1), например, для тита-
нового сплава ВТ6 (Ti-6Al-4V) [4], показывает, что в диапазоне R ∈ [0.5, 0.8)
максимальная деформация достигает 4% (против, в среднем, 0.2% в диапазоне
R ∈ [0, 0.5)) и наблюдается удлинение образца. При этом максимальное напря-
жение цикла практически не зависит от числа циклов и становится близким к
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пределу текучести сплава. Имеет место явление, называемое циклической пол-
зучестью – возникновение и развитие неупругих деформаций и вязкого разру-
шения. При R ∈ [0.5, 0.7) наблюдается ползучесть и усталостные бороздки, а
при R ≥ 0.7 имеет место развитая циклическая ползучесть при отсутствии уста-
лостных бороздок. Изменяется характер процесса: определяющим становится
развитие процесса вязкого разрушения, характерного для процесса ползучести.

Широкое использование ускоренных испытаний требует изучения зависимо-
сти усталостных свойств материала от частоты нагружения. Циклы исследо-
ваний, посвященные этой проблеме, проводятся на титановых сплавах ВТ6 и
ВТ22, в том числе при нагружениях с несимметричными циклами [6–9, 11, 20].
Для сплава ВТ6 наблюдается как монотонная зависимость усталостных свойств
от частоты [7], так и немонотонная зависимость от частоты [8, 9], а также отсут-
ствие влияния частоты на усталостные свойства [7]. Зависимость усталостных
свойств материала от частоты связана с различной подготовкой его структуры
и поверхности образцов.

1. Масштабно-структурные уровни разрушения. При описании хруп-
кого разрушения предлагается выделять шесть масштабно-структурных уров-
ней с определением понятия дефекта j-ого масштабного уровня в некотором
представительном объеме Vc (Vc = L3 - объем твердого тела, в котором воз-
можно зарождение начальной макротрещины-лидера длины L) [1, 22]. Дефект
j-ого уровня характеризуется линейным размером lj = lj (τ) на интервале вре-
мени τ ∈ [0, t] и плотностью дефектов qj = qj (τ) в объеме Vc, задаваемой
формулой: qj (τ) = lim∆ V→ Vc ∆qj (τ) /∆V , где ∆qj = ∆qj (τ) – среднее ко-
личество дефектов в объеме ∆V в момент времени τ ∈ [0, t], j = 1, . . . , 6.
Вводится непрерывная возрастающая функция j-ого уровня l∗j = l∗j (τ) от ли-
нейного размера lj = lj (τ) и плотности qj = qj (τ), например, в таком виде:
l∗j (τ) = lj (τ) (qj (τ)Vc)

γ, γ = const, j = 1, . . . , 6, τ ∈ [0, t], которая имеет раз-
мерность длины. Образование дефекта j-ого масштабного уровня начинается с
достижения функцией l∗j−1 = l∗j−1 (τ) предельного значения l∗f,j−1 в момент вре-
мени τj−1, j = 1, . . . , 6, τ0 = 0 (в момент времени τj дефекты j-го уровня достига-
ют своего предельного состояния). Образование дефектов каждого масштабно-
го уровня происходит в результате последовательного зарождения, развития и
слияния дефектов предыдущих уровней. Вследствие случайного распределения
дефектов по объему Vc процесс усталостного разрушения является стохастиче-
ским, а значения l∗j−1 = l∗j−1 (τ) для каждого момента времени τ , τ ∈ [0, t] –
случайными величинами.

Эволюция дефектов типа микро-, мезо- и макротрещин изучается различ-
ными физическими методами: по изменению плотности, по измерению магнит-
ных и электрических свойств, акустических, тепловых и рентгеновских полей и
др. [23–27]. На практике для контроля за процессом разрушения конструкций
применяются методы неразрушающего контроля, основанные на различных фи-
зических принципах, в том числе электронная дефектоскопия, ультразвуковой
анализ, вихретоковый контроль, магнитная дефектоскопия, рентгеноструктур-
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ный анализ, акустико-эмисионный анализ, радиационная дефектоскопия, циф-
ровая спекл-интерферометрия и др., которым посвящена обширная литература
[24, 28–30].

2. Модель усталостного масштабно-структурного разрушения. Вслед-
ствие случайного распределения дефектов по объему Vc процесс усталостного
разрушения является стохастическим, а значения l∗j для каждого момента вре-
мени τ , τ ∈ [0, t] – случайными величинами. Функция распределения вероятно-
сти неразрушения (функция надежности) на j-ом уровне Fj = Fj (τ) определяет
вероятность, с которой случайное значение усредняющей функции l∗j в момент
времени τ принимает значения меньше своего предельного значения, а именно
Fj = P

(
l∗j < l∗f,j

)
, j = 1, . . . , 6. Вероятность разрушения j-го уровня опреде-

ляется как: Qj (τ) = 1 − Fj (τ), τ ∈ [0, t], j = 1, . . . , 6. Формирование дефекта
каждого уровня происходит вследствие последовательного образования, роста
и слияния дефектов всех предыдущих уровней. Это должно отражаться при
построении определяющих соотношений для Qj = Qj (τ), j = 1, . . . , 6.

Функция распределения вероятности макроразрушения Q = Q (τ), τ ∈ [0, t],
0 ≤ Q (τ) ≤ 1, определяется таким образом:

Q (τ) = Q5 (τ) +Q∗
4 (τ) +Q∗

5 (τ) +Q6 (τ) , (2)

где функция Q∗
4 = Q∗

4 (τ) – вероятность разрушения по дефектам четвертого
уровня при формировании и развитии дефектов пятого уровня, и, аналогично,
функция Q∗

5 = Q∗
5 (τ) – вероятность разрушения по дефектам пятого уровня

при формировании и развитии дефектов шестого уровня. Кривые усталости по
уровням дефектности определяются следующими уравнениями:

Qj(τj) = Qj,th, j = 1, . . . , 6, (3)

Q∗
j (τj+1) = 1−Qj+1,th, Q∗

j (τj) = Qj,th, j = 4, 5, (4)

где τj – долговечность на j-ом уровне, Qj,th ∈ [0, 1] – некоторое заданное зна-
чение вероятности (в данной работе принимается Qj,th = 1). На макроуровне
функция Q = Q (τ), τ ∈ [0, t], 0 ≤ Q (τ) ≤ 1, определяет кривую усталости
по образованию одной или нескольких макротрещин-лидеров конечной длины в
виде:

Q(tf ) = Qth, (5)

где tf – долговечность по образованию макротрещины конечной длины с неко-
торой заданной вероятностью Qth (в этой работе Qth = 1). Дальнейшее развитие
макротрещины-лидера описывается методами и подходами механики разруше-
ния. Функции Qj = Qj (τ), j = 1, . . . , 6, τ ∈ [0, t] при нагружении (1) определя-
ются так:

Qj (τ) = µj (τ) max
z∈[0,t]

|φj (z)| , j = 1, . . . , 6, (6)

а функции Q∗
j = Q∗

j (τ), j = 4, 5, τ ∈ [0, t] в (2) – в виде:
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Q∗
j (τ) = µ∗j (τ) max

z∈[0,t]

∣∣φ∗
j (z)

∣∣ , j = 4, 5, (7)

где µj = µj (τ), µ∗j = µ∗j (τ) – материальные функции, определяемые ниже. В
модели полагается, что функции φj = φj (z) и φ∗

j = φ∗
j (z), z ∈ [0, t] в (6), (7)

представляются через интегральный оператор Гильберта-Шмидта в виде:

φj (z) =

∫ t

0
Kj (z, τ)σ (τ) dτ, j = 1, . . . , 6, (8)

φ∗
j (z) =

(
Cj

⟨σ (τ)⟩
− 1

)∫ t

0
K∗

j (z, τ)σ (τ) dτ, j = 4, 5, (9)

⟨σ (τ)⟩ = max
τ∈[0,t]

|σ (τ)| − 1

t

∫ t

0
σ (τ) dτ,

где Kj = Kj (z, τ) и K∗
j = K∗

j (z, τ) – положительно определенные симметриче-
ские ядра интегральных операторов, σ = σ (τ) ∈ L2 [0, t], Kj ,K

∗
j ∈ L2[0, t]

2, Cj –
константы материала. Вероятности разрушения j-го уровня Qj = Qj (τ) в (8) и
Q∗

j = Q∗
j (τ) в (9) записываются в следующем виде:

Qj (τ) = µj (τ) max
z∈[0,t]

∣∣∣∣∣
∞∑
k=0

DkΩk (z)

λjk

∣∣∣∣∣ , Dk =

∫ t
0 σ (τ)Ωk (τ) dτ∫ t

0 Ω
2
k (τ) dτ

, j = 1, . . . , 6, (10)

Q∗
j (τ) = µ∗j (τ) max

z∈[0,t]

∣∣∣∣∣
∞∑
k=0

D∗
kΩk (z)

λ∗jk

∣∣∣∣∣ , D∗
k =

(
Cj

⟨σ (τ)⟩
− 1

)
Dk, j = 4, 5, (11)

где {λjk}
∞
k=0, {λ∗jk }∞k=0 – собственные числа операторов, {Ωk (z)}∞k=0 – соответ-

ствующие собственные функции. В соотношениях (10), (11) ряды сходятся абсо-
лютно и равномерно на отрезке [0, t]. По теореме Гильберта-Шмидта функции
φj = φj (z) и φ∗

j = φ∗
j (z) можно представить в виде рядов по собственным функ-

циям ядер Kj = Kj (z, t) и K∗
j = K∗

j (z, t) соответственно, которые сходятся к
ним абсолютно и равномерно на [0, t] (§ 14 [31]). В качестве собственных функ-
ций {Ωk}∞k=0 выбирается полная замкнутая ортогональная система функций в
L2 [0, t]. Процесс нагружения (1) можно разложить по системе функций {Ωk}∞k=1:

σ (τ) =
∞∑
k=0

DkΩk (τ) , Ωk =

∫ t
0 σ (τ)Ω (τ) dτ∫ t

0 Ω
2
k (τ) dτ

. (12)

Выражение (12) является рядом Фурье функции σ = σ (τ). В настоящей рабо-
те рассматриваются ядра интегральных операторов, для которых система соб-
ственных функций {Ωk}∞k=0 является системой тригонометрических функций
следующего вида:

Ω0 = 1, Ω1 = sin
2πτ

t
, Ω2 = cos

2πτ

t
, . . . , (13)
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Ω2k−1 = sin
2πkτ

t
, Ω2k = cos

2πkτ

t
, k ∈ N.

Разложение процесса нагружения (1) в ряд Фурье на отрезке [0, t] по соб-
ственным функциям (13) имеет следующий вид:

σ (τ) =
∞∑
k=0

DkΩk (τ) , (14)

D0 =
1

t

∫ t

0
σ (τ) dτ , Dm =

2

t

∫ t

0
Ωm (τ)σ (τ) dτ, m ∈ N.

3. Определение собственных чисел при симметричном нагружении.
Для одночастотного симметричного нагружения такого вида:

σ (τ) = σaΩk (τ) , τ ∈ [0, t] , k ∈ N, (15)

где σa – амплитуда нагружения, ω = 2πk/t – круговая частота нагружения,
функции µj = µj (n) в (6), (7) определяются в виде:

µj (n) =

(
lg

n

nj−1

)χ

, lgn > lgnj−1 , j = 1, . . . , 6, (16)

µ∗j (n) =

(
lg

n

nj−1

)χ∗

, lgn > lgnj , j = 4, 5, (17)

где n – число циклов нагружения (15), nj−1 = nj−1 (σa) – долговечность на
(j − 1)-ом уровне, выраженная в числах циклов, χ, χ∗ – материальные констан-
ты модели. Рассматривается собственная функция Ωk = Ωk (z), k ∈ N, (13) и
записываются следующие вероятности разрушения Qj (n) и Q∗

j (n) при нагру-
жении (15):

Qj (n) = µj (n) max
z∈[0,t]

∣∣∣∣∣σaΩk (z)

λjk

∣∣∣∣∣ = µj (n)
σa

λjk
, j = 1, . . . , 6, (18)

Q∗
j (n) = µ∗j (n)

(
Cj

σa
− 1

)
max
z∈[0,t]

∣∣∣∣∣σaΩk (z)

λ∗jk

∣∣∣∣∣ = µ∗j (n)
Cj − σa

λ∗jk
, j = 4, 5, (19)

где n – число циклов нагружения. По уравнениям (3) находятся собственные
числа {λjk}

∞
k=1 в виде:

λjk = σj (ωk, Nj)

(
lg

Nj

nj−1 (σj)

)χ

, j = 1, . . . , 6, (20)

ωk = 2π [(k + 1) /2] /t,

где квадратные скобки означают целую часть числа; σj = σj (ωk, Nj), j = 1, . . . , 6
– функции материала, при которых дефект j-го уровня достигает предельного
состояния, а функция l∗j = l∗j (τ) – предельного значения l∗f,j при нагружении
(15).
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Для нахождения материальных функций σj = σj (ωk, Nj), k ∈ N, j = 1, . . . , 6,
необходимо проводить серию макроэкспериментов по усталостной прочности
при достижении соответствующих предельных состояний на каждом уровне с
обработкой шлифов методами анализа микроструктуры. При заданной частоте
ω в известных работах, справочниках и других источниках содержится огра-
ниченный объем информации. В некоторых частных случаях для материалов
могут быть известны зависимости плотности дефектов и их размеров от ампли-
туды напряжения. В целом, в силу сложности проведения таких экспериментов,
возникает задача определения усталостных характеристик на микроуровне по
данным испытаний на макроуровне. Предложен некоторый метод их нахож-
дения [1, 22]. По опытным данным определяется пара (σ4, N4) и величина σ4
принимается равной условному пределу выносливости или пределу усталости
материала σ−1 при числе циклов N4, при котором наблюдается макроразру-
шение по коротким трещинам. Заметное изменение микро- и макроструктуры
наблюдается при изменении числа циклов нагружения на десятичные порядки,
поэтому можно положить: lgNj = lgN4 + 4− j, j = 1, 2, 3 и lgNj = lgN4 + 3− j,
j = 5, 6. В данной работе амплитуды σj , j = 1, 2, 3, при которых достигаются
предельные состояния микроуровня, определяются через величину σ4 следую-
щим образом: σ1 = 0.65σ4, σ2 = 0.76σ4, σ3 = 0.86σ4. Отметим, что при наличии
соответствующих опытных данных в качестве материальных констант можно
рассматривать и другие значения. Например, если известен предел чувстви-
тельности материала σth, то полагается σ1 = σth. Для многих исследованных
материалов, в среднем, σth ≈ 0.5σпр (σпр – предел пропорциональности мате-
риала). Амплитуду напряжений σ5 можно определять по кривой усталости по
образованию единичных макротрещин (по макроразрушению) при N5. При от-
сутствии данных полагается: σ6 = σs, где σs – предел текучести материала.

Из условия (4) выписываются следующие выражения для собственных чисел
{λ∗jk }∞k=1:

λ∗jk = (Cj − σj (ωk, Nj))

(
lg

Nj

nj−1 (σj)

)χ∗

, j = 4, 5, (21)

где Cj в данном случае определяются по материальным функциям модели Cj =
σj+1 (ωk, Nj+1).
Таким образом для нагружения (15) вероятности разрушения j-го уровня Qj =
Qj (n) и Q∗

j = Q∗
j (n) записываются в следующем виде:

Qj (n) =
σa

σj (ω,Nj)

(
lgn − lgnj−1 (σa)

lgNj − lgnj−1 (σj)

)χ

, (22)

lgn ≥ lgnj−1 , σa > σj−1, n0 = 1, j = 1, . . . , 6,

Q∗
j (n) =

σj+1 (ω,Nj+1)− σa
σj+1 (ω,Nj+1)− σj (ω,Nj)

(
lgn − lgnj−1 (σa)

lgNj − lgnj−1 (σj)

)χ∗

, (23)

lgn ≥ lgnj , σj ≤ σa ≤ σj+1, j = 4, 5.
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Критерии для кривых усталости равной вероятности разрушения по уровням
дефектности определяются уравнениями (3)–(5).

4. Определение собственных чисел при пульсирующем нагруже-
нии. Вероятности разрушения Qj = Qj (n) и Q∗

j = Q∗
j (n), j = 1, . . . , 6, при

нагружении следующего вида:

σ (τ) = σa(1 + sinωτ), τ ∈ [0, t] , ω = 2πk/t, (24)

представляются таким образом:

Qj (n) = µj (n) max
z∈[0,t]

∣∣∣∣∣σaλj0 +
σa sinωz

λjk

∣∣∣∣∣ = µj (n) σa

(
1

λj0
+

1

λjk

)
, (25)

Q∗
j (n) = µ∗j (n)

(
Cj

σa
− 1

)
max
z∈[0,t]

∣∣∣∣∣ σaλ∗j0 +
σa sinωz

λ∗jk

∣∣∣∣∣ = (26)

= µj (n) (Cj − σa)

(
1

λ∗j0
+

1

λ∗jk

)
.

По уравнениям (3) находятся собственные числа λj0 в виде:

λj0 =
σj (ω,Nj)σ

0
j

(
ω,N0

j

)(
(lgNj − lgnj−1 (σj) )

(
lgNj − lgnj−1

(
σ0j

) ))χ
σj (ω,Nj) (lgNj − lgnj−1 (σj) )

χ − σ0j

(
lgNj − lgnj−1

(
σ0j

) )χ , (27)

где σ0j = σ0j (ω,Nj), j = 1, . . . , 6 – функции материала, при которых дефект j-го
уровня достигает предельного состояния, а функции l∗j = l∗j (τ) – предельных
значений l∗f,j при нагружении (24).

Из условия (4) выписываются следующие выражения для собственных чисел
{λ∗jk }∞k=1, j = 1, . . . , 6:

λ∗j0 = (28)

=
(σj+1 (ω,Nj+1)− σj (ω,Nj))

(
Cj − σ0j

(
ω,N0

j

))(
(lgNj − lgnj−1 (σj) )

(
lgNj − lgnj−1

(
σ0j

) ))χ∗

(σj+1 (ω,Nj+1)− σj (ω,Nj)) (lgNj − lgnj−1 (σj) )
χ∗ −

(
Cj − σ0j

(
ω,N0

j

))(
lgNj − lgnj−1

(
σ0j

) )χ∗,

где Cj определяются по материальным функциям модели, Cj = σ0j+1 (ω,Nj+1).
При нагружении (24) вероятности разрушения j-го уровня Qj = Qj (n) прини-
мают следующий вид:

Qj (n) =
σa

σ0j (ω,Nj)

(
lgn − lgnj−1 (σa)

lgNj − lgnj−1 (σ0j )

)χ

, (29)

lgn ≥ lgnj−1 , σa > σj−1, j = 1, . . . , 6,
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Q∗
j (n) =

σ0j+1 (ω,Nj+1)− σa

σ0j+1 (ω,Nj+1)− σ0j (ω,Nj)

(
lgn − lgnj−1 (σa)

lgNj − lgnj−1 (σ0j )

)χ∗

, (30)

lgn ≥ lgnj , σj ≤ σa ≤ σj+1, n0 = 1, j = 4, 5.

Кривые усталости равной вероятности разрушения по уровням дефектности за-
даются уравнениями (3)–(5).

5. Вероятность разрушения при нагружении с несимметричным
циклом. В случае нагружения вида (1) во всем диапазоне асимметрии цикла R,
кроме R /∈ [0.5, 1], модель усталостного масштабно-структурного разрушения
представляется следующим образом:

Qj (n) = (lgn − lgnj−1 )χ× (31)

×

(
σm

σ0j (ω,Nj) (lgNj − lgnj−1 (σ0j ))
χ +

σa − σm
σj (ω,Nj) (lgNj − lgnj−1 (σj))

χ

)
,

lgn ≥ lgnj−1 , σa > σj−1, n0 = 1, j = 1, . . . , 6,

Q∗
j (n) = (lgn − lgnj−1 )χ

∗
(
Cj

σa
− 1

)
× (32)

×

(
σm

(σ0j+1 (ω,Nj+1)− σ0j (ω,Nj))(lgNj − lgnj−1 (σ0j ))
χ∗ +

+
σa − σm

(σj+1 (ω,Nj+1)− σj (ω,Nj)) (lgNj − lgnj−1 (σj))
χ∗

)
,

lgn ≥ lgnj , σj ≤ σa ≤ σj+1, j = 4, 5, R =
σm + σa
σm − σa

,

Qj(τj) = Qj,th, j = 1, . . . , 6,

Q∗
j (τj+1) = 1−Qj+1,th, Q∗

j (τj) = Qj,th, j = 4, 5, (33)

Q (τ) = Q5 (τ) +Q∗
4 (τ) +Q∗

5 (τ) +Q6 (τ) , Q(tf ) = Qth,

где Cj – амплитуда нагружения с асимметричным циклом (1), при которой де-
фекты (j + 1)-го уровня достигают предельного состояния.

6. Анализ процесса разрушения для титановых сплавов. 6.1 Резуль-
таты анализа для сплава ВТ3-1. Для неполированных образцов титанового
сплава ВТ3-1 (σв = 1100 МПа, σs = 960 МПа, σв – временное сопротивление, σs
– предел текучести), имеющего смешанную глобулярно-пластинчатую двухфаз-
ную (α+ β)-структуру, выбираются следующие значения показателей функций
в выражениях (16), (17):

χ = χ∗ =
1

3
. (34)
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По данным [2] определяется значение σ4 = σ−1 = 325 МПа при числе N4 =
= N−1 = 109 циклов, σ5 = 350 МПа при N5 = 4 ·105 циклов и частоте ν = 20 кГц
(σ−1 − условный предел выносливости для неполированных образцов). В работе
[2] также представлены опытные данные для полированных образцов из сплава
ВТ3-1, согласно которым: σ4 = σ−1 = 385 МПа при N−1 = 1010 циклов, σ5 =
= 425 МПа при N5 = 7 · 105 циклов и ν = 20 кГц.

На рисунке 1 представлены области развития дефектов (22), (23) и кривые
усталости по уровням дефектности (3) для неполированных образцов (пункти-
ром) и для полированных образцов (точками) соответственно при симметрич-
ном нагружении. Кривые усталости по макроразрушению (2), (5) обозначены
сплошными линиями и буквами ftН и ftΠ для неполированного и полирован-
ного образцов соответственно, кружочками обозначены опытные данные для
неполированного образца, крестиками − для полированного образца. Получено
хорошее соответствие опытным данным [2]. На рисунке 1 также представле-
ны фотографии структуры сплава, которая наблюдается на соответствующих
уровнях развития процесса разрушения. Исходная структура представлена на
фотографии (а) (первый уровень), на фото (б) − структура с микродефектами
на границах и внутри пластинчатой α-фазы в виде черных пятен (второй микро-
уровень), на фото (в) – гладкие фасетки от раскалывания охрупченных волокон
α-фазы (третий микроуровень), на фото (г) − выход процесса разрушения на
мезоуровень и образование мезотрещин размера β-фазы на одной стороне из-
лома по α-фазе в виде уступов, на другой половине − в виде впадин, и фото
(д) − разрушение по пластинчатой структуре β-фазы (четвертый мезоуровень).
Анализ фрактографии излома на рисунке 1 (ж) показывает, что очаг разру-
шения находится в объеме тела внутри отмеченного круга (пунктирные линии
указывают на границы двух кластеров (α + β) пластинчатой структуры), что
является характерным для разрушения титановых сплавов в областях гигацик-
ловой усталости (в среднем, Nf ∈ (106, 1011) циклов до разрушения). На фото
(е) приведена фрактография излома в области многоцикловой усталости при
очаге микроразрушения на поверхности.

Результаты исследования зависимости от частоты нагружения сплава
ВТ3-1 представлены на рисунке 2 a (для неполированных образцов). Постро-
ены кривые усталости по уровням дефектности с частотой ν = 20 кГц (опытные
данные на рисунке 2 a обозначены кружками) и ν = 35 Гц (опытные данные
обозначены крестами). Материальные константы при ν = 35 Гц выбирались
следующими: σ4 = 500 МПа, N4 = 2 · 105 циклов, σ5 = 730 МПа, N5 = 104 цик-
лов. Наблюдается зависимость – усталостные свойства сплава ВТ3-1 зависят от
частоты нагружения. Пределы усталости увеличиваются, в среднем на 40% при
равных долговечностях.

Также с достаточной инженерной точностью можно построить уровни де-
фектности для образцов с надрезом (рис. 2 б); базовые характеристики модели
предлагается также определять по экспериментальным данным для образцов с
надрезом [3]: σ4 = σ−1 = 280 МПа при N4 = 107 циклов, σ5 = 380 МПа при
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Рис. 1. Кривые усталости для неполированных и полированных образцов из титанового сплава
ВТ3-1 при одноосном симметричном нагружении; а-ж−фотографии микроструктуры [2]

(a) (б)

Рис. 2. Кривые усталости по уровням дефектности для титанового сплава ВТ3-1 при одноос-
ном симметричном нагружении: (a) – для гладких образцов при разных частотах, (б) – для

образцов с надрезом

119



Э.Б. Завойчинская, Г.Е. Лавриков

N5 = 105 циклов, σ6 = 650 МПа при N6 = 7 · 103 циклов, ν = 35 Гц. На рисун-
ке 2 б сплошной линией изображена кривая усталости по макроразрушению при
симметричном нагружении, точками − опытные данные. Получено удовлетво-
рительное соответствие с имеющимися опытными данными.

На рисунке 3 представлены усталостные кривые по четырем уровням де-
фектности по соотношениям (31)–(33) для сплава ВТ3-1 при ν = 100 Гц и коэф-
фициентах асимметрии цикла R = −1, 3, ∞ (в областях циклического сжатия).
На основании экспериментальных данных [5] выбираются следующие амплиту-
ды напряжений: σ4 = 402 МПа, σ04 = 301, 5 МПа при числе N4 = 106 циклов.
В рассматриваемом диапазоне значений коэффициентов асимметрии цикла при
увеличении R наблюдается увеличение амплитуды нагружения. Например, при
R = 3 пределы усталости увеличиваются, в среднем, в два раза по сравнению с
симметричным циклом при разных долговечностях, а при R = ∞ – в 1.5 раза.

Рис. 3. Кривые усталости в координатах σa ∼ N титанового сплава ВТ3-1 по уровням дефект-
ности при разных R

6.2 Результаты анализа для сплава ВТ6 (Ti-6Al-4V). Результаты рас-
четов по модели для титанового сплава ВТ6 (σв = 1050 МПа, σs = 950 МПа)
[6], имеющего двухфазную (α + β)-структуру, при симметричном нагружении,
для которого выбираются следующие значения показателей в выражениях (16),
(17):

χ = χ∗ =
1

2
, (35)
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и базовые константы: при частоте ν = 20 кГц – σ4 = σ−1 = 450 МПа при
N4 = 9 · 109 циклов, σ5 = 475 МПа при N5 = 8 · 107 циклов, σ6 = 500 МПа при
N6 = 7 · 106 циклов, а при частоте ν = 30 Гц (в условиях изгиба с вращением) –
σ4 = σ−1 = 495 МПа при N4 = 107 циклов, σ5 = 600 МПа при N5 = 105 циклов,
σ6 = 840 МПа при N6 = 6 · 103 циклов, представлены на рисунке 4 (кривая
усталости по макроразрушению при ν = 20 кГц обозначена ft 20 kHz , а при
ν = 30 Гц – ft 30 Hz). Получено удовлетворительное соответствие опытным
данным. Из рисунка 4 видно, что усталостные свойства этого сплава не зависит
от частоты нагружения. При этом анализ поверхностей усталостного излома
сплава с помощью сканирующего электронного микроскопа выявил небольшие
различия при разрушении в много- и гигацикловой областях; во всех случаях
очаг микроразрушения находился на поверхности (рис. 4 а и б) [6].

Рис. 4. Кривые усталости по уровням дефектности для титанового сплава ВТ6 при разных
частотах симметричного нагружения; фрактографии: a – σa = 450 МПа, Nf = 1.17·109 циклов;

б – σa = 475 Мпа, Nf = 1.74 · 109 циклов [6]

В результате анализа усталостных свойств сплава ВТ6 от частоты сделаны
следующие выводы. В [6] для серии образцов (ν = 30 Гц, 20 кГц) наблюдается
отсутствие зависимости от частоты (рис. 4). Анализ поверхностей усталостно-
го излома сплава с помощью сканирующего электронного микроскопа выявил,
что у большинства образцов наблюдались поверхностные трещины (рис. 4 a); в
исключительных случаях трещина развивалась под поверхностью (рис. 4 б) [6].
В работах [7, 11] рассматриваются три группы образцов A, B, C с различной
структурой и обработкой поверхности при частотах ν = 120 Гц, 600 Гц и 20
кГц. Для образцов из группы A (σs = 916 МПа, σв = 960 МПа) с размером
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зерна 0.007 мм и группы B (σs = 897 МПа, σв = 967 МПа) с размером зерна
0.02 мм не наблюдается влияние частоты. При этом анализ для образцов из
группы С (σs = 866 МПа, σв = 906 МПа) со структурой, близкой к группе A, и
пределами усталости в среднем меньше до 15%, показал зависимость усталост-
ных свойств от частоты, что, по-видимому, связано с обработкой поверхности.
Предел усталости при Nf = 106 циклов и ν = 20 кГц оказался на 20% выше,
чем при ν = 120 Гц. В образцах группы С очаг микроразрушения наблюдался
на поверхности во всех опытах, в образцах групп A и B – на поверхности толь-
ко до Nf = 5 · 106 циклов. В [8, 9] для серий образцов получена немонотонная
зависимость от частоты.

По нашему мнению, зависимость усталостных свойств от частоты связана
со структурой и подготовкой поверхности образцов. В случае подготовленной
мелкозернистой структуры сплава и качественной обработки поверхности зави-
симость от частоты не фиксируется. У сплава в состоянии поставки наблюда-
ется, в ряде случаев, немонотонная зависимость от частоты. В других случаях
наблюдается различное влияние частоты на усталостные свойства. Например,
для серии образцов C [7] с подготовленной структурой выявляется зависимость
от частоты, что, по-видимому, связано с обработкой поверхности, в то время как
для серии образцов B [7] с обработанной поверхностью не наблюдается зависи-
мость усталостных свойств от частоты.

На рисунке 5 по данным [11] представляются кривые усталости по уровням
дефектности для сплава ВТ6 при частотах нагружения ν = 120 Гц и 20 кГц с

Рис. 5. Кривые усталости по уровням дефектности и по макроразрушению для титанового
сплава ВТ6 в координатах σmax ∼ N при разных коэффициентах асимметрии R
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асимметриями R = −1, 0, 0.3 по соотношениям (31)–(33). Выбираются такие
базовые амплитуды напряжения: σ4 = 550 МПа и σ04 = 300 МПа при N4 = 4 ·108
циклов, σ5 = 600 МПа, σ05 = 600 МПа при N5 = 2 · 105 циклов. Точками обозна-
чаются опытные данные при R = 0, крестиками – при R = 0.3 и звездочками
– при R = −1. Получено удовлетворительное соответствие опытным данным.
В рассматриваемом диапазоне коэффициентов асимметрии цикла при увели-
чении R наблюдается увеличение максимального значения напряжений. Напри-
мер, максимальное значение напряжения при R = 0.3, в среднем, увеличивается
на 15% по сравнению с симметричным циклом при одинаковых долговечностях.
В результате исследований сделан вывод, что асимметрия цикла нагружения не
оказывает влияния на зависимость усталостных свойств от частоты.

6.3 Результаты анализа для сплава ВТ22. Для сплава ВТ22 (σв = 1700
МПа, σs = 1600 МПа), имеющего (α+ β) -структуру, выбираются значения (35)
показателей функций в выражениях (16), (17). Исходя из данных [12] при сим-
метричном цикле и частоте ν = 20 кГц, базовая амплитуда σ4 = σ−1 = 635 МПа
при N4 = 1.3 · 109 циклов, σ5 = 850 МПа при N5 = 2 · 107 циклов. После опре-
деления всех базовых констант строятся расчетные кривые усталости по пяти
уровням дефектности (рис. 6) и по макроразрушению ft (изображена сплошной
линией на рис. 6). Получено хорошее соответствие опытным данным (кружки на
рис. 6). Анализ изломов [12] c использованием сканирующей электронной мик-
роскопии показал, что зарождение усталостных трещин при Nf ≥ 107 циклов

Рис. 6. Кривые усталости титанового сплава ВТ22 при симметричном нагружении; а – вид
излома с очагами зарождения микротрещин под поверхностью при σa = 702 МПа, Nf = 7.1·107
циклов; б – вид излома с растрескиванием материала на стадии развития коротких мезотрещин

при σa = 640 МПа, Nf = 1.9 · 108 циклов [12]
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имеет место в объеме тела (рис. 6 а). При росте трещины формируется развитый
волнистый рельеф с растрескиванием материала (рис. 6 б).

6.4 Результаты анализа для сплава ВТ1-0. На рисунке 7 a представ-
лены результаты расчетов для сплава ВТ1-0 (σв = 490 МПа, σs = 376 МПа),
который имеет α-структуру, рассматривается в ультрамелкозернистом (УМЗ)
(σ4 = σ−1 = 200 МПа при N4 = 1.9 · 109 циклов, σ5 = 250 МПа при N5 = 5 · 106
циклов, σ6 = 300 МПа при N6 = 5 · 105 циклов) и крупнокристаллическом (КК)
(σ4 = σ−1 = 155 МПа при N4 = 1.9 · 109 циклов, σ5 = 180 МПа при N5 = 9 · 105
циклов) состоянии [13] при симметричном нагружении с частотой ν = 20 кГц.
Для показателей функций в (16), (17) также выбираются значения (35). Кри-
вые усталости по макроразрушению обозначены ft УМЗ и ft КК для сплава
ВТ1-0 в УМЗ и КК состояниях соответственно. Получено удовлетворительное
соответствие опытным данным (представлены точками и крестами для УМЗ и
КК состояний соответственно). В работах [13, 14] отмечается, что переход от
КК к УМЗ структуре повышает выносливость сплава в области гигацикловой
усталости (пределы усталости могут увеличиваются, в среднем, в 1.3 раза).

6.5 Результаты анализа для сплава ПТ-3В. На рисунке 7 б представ-
лены результаты расчетов для сплава ПТ-3В, имеющего псевдо α-структуру
(σв = 736 МПа, σs = 667 МПа) при ν = 5 Гц. Базовые константы по данным
[15] следующие: амплитуды σ4 = σ−1 = 370 МПа и σ04 = 250 МПа при N4 = 106

циклов, σ5 = 470 МПа при N5 = 104 циклов, σ6 = 660 МПа при N6 = 500 циклов.

(a) (б)

Рис. 7. Кривые усталости по уровням дефектности и по макроразрушению: (a)−для титанового
сплава ВТ1-0 в УМЗ и КК состоянии, (б)−для титанового сплава ПТ-3В

Для показателей функций (16), (17) выбираются значения (35). Получено хоро-
шее соответствие опытным данным (кружки на рис. 7 б). Проводятся расчеты
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при коэффициентах асимметрии цикла: R = −5, −2, 0. На рисунке 8 представ-
лены кривые усталости по уровням дефектности при следующих асимметриях
цикла: R = −5, −2, −1, 0. Кривые усталости по хрупкому макроразрушению
изображены сплошными линиями, точками обозначены опытные данные при
R = −2, треугольниками – при R = −1, крестиками – при R = −5, звездочками
− R = 0 [15]. Расчетные кривые удовлетворительно описывают опытные данные.
В рассматриваемом диапазоне коэффициентов асимметрии цикла при уменьше-
нии R наблюдается уменьшение максимального значения напряжений. На ри-
сунке 9a представлен график зависимости максимального напряжения цикла

Рис. 8. Кривые усталости σmax ∼ N по уровням дефектности и по макроразрушению для
сплава ПТ-3В при разных коэффициентах асимметрии цикла R

σmax от коэффициента асимметрии R при Nf = 106 циклов при разрушении по
дефектам мезоуровня (диаграмма Хея-Смита), крестиками обозначены опытные
данные. На рисунке 9 б изображены поверхности по мезоразрушению и макро-
разрушению соответственно в координатах (σmax, lgN , R). Точками отмечены
опытные данные по макроразрушению.

6.6 Результаты анализа для сплава TC17. На рисунке 10 представлены
результаты расчетов для сплава TC17, имеющего (α+ β)-структуру (σв = 1140
МПа, σs = 1094 МПа) при ультразвуковом симметричном нагружении (ν = 20
кГц) и следующих базовых константах [16]: σ4 = σ−1 = 570 МПа при N4 =
9.45 · 109 циклов, σ5 = 750 МПа при N5 = 7.56 · 106 циклов, σ6 = 850 МПа при
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(a) (б)

Рис. 9. Для титанового сплава ПТ-3В: (a) – диаграмма Хея-Смита при Nf = 106 циклов; (б) –
поверхности мезо- и макроразрушения

Рис. 10. Кривые усталости по уровням дефектности и макроразрушению для титанового спла-
ва TC17 и фрактографии поверхностей излома [16]
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N6 = 7.53 ·105 циклов. Для показателей функций в (16), (17) выбираются значе-
ния (33). Получено хорошее соответствие опытным данным (обозначены круж-
ками). На рисунке 10 a и б представлены фрактографии с очагом на поверхности
образца при (σ4, N4) и σa = 650 МПа, Nf = 2.67 · 108 циклов соответственно; на
рисунке 10 в изображено место образования множественных трещин при ампли-
туде σ5; на рисунке 10 г показан очаг микротрещины под поверхностью образца
при амплитуде σ6.

Заключение. Современное состояние проблемы прогнозирования долговеч-
ности связано с построением многоуровневых вероятностных моделей усталост-
ного разрушения, которые должны основываться на физических закономерно-
стях развития процесса. В этой работе предлагается одна из таких моделей.
Записываются определяющие соотношения для функций распределения веро-
ятностей разрушения и критерии усталостной прочности на микро-, мезо- и
макроуровне для осевого нагружения во всем диапазоне асимметрии цикла,
кроме R ∈ [0.5, 1]. Представляются расчетные кривые усталости по уровням де-
фектности для титановых сплавов ВТ1-0, ВТ3-1, ВТ6, ВТ22, ПТ-3В, TC17 при
различных коэффициентах асимметрии цикла и частотах нагружения, включая
циклические растяжение, сжатие и растяжение-сжатие, хорошо описывающие
имеющиеся опытные данные. Зависимость усталостных свойств от частоты свя-
зывается с подготовкой структуры сплава и обработкой поверхности.

Для сплава ВТ6 максимальное значение напряжения циклического растяже-
ния при R = 0.3, в среднем, увеличивается на 15% по сравнению с симметрич-
ным циклом при одинаковых долговечностях. При этом амплитуда напряжения
уменьшается, в среднем, на 60% по сравнению с симметричным циклом при
одинаковых долговечностях, а долговечность при постоянной амплитуде умень-
шается более, чем на два порядка. Это необходимо учитывать, если в теле могут
иметь место остаточные растягивающие напряжения, например, после обработ-
ки резанием (точения) поверхности они могут составлять до 70 МПа на глубине,
в среднем, 0.05-0.2 мм.

При циклическом сжатии наблюдается увеличение амплитуды напряжений
по сравнению с симметричным циклом при равных долговечностях. Например,
для сплава ВТ3-1 при R = 3 она увеличивается, в среднем, в два раза. На
этом основаны технологии упрочнения, создающие остаточные сжимающие на-
пряжения в поверхностных слоях элементов конструкций (обработка дробью,
шариками и т.п.), что имеет место, например, при обработке деталей шасси из
титановых сплавов. Лазерная ударная обработка титанового сплава ВТ6 (удар-
ной волной при давлении порядка 1 ГПа, скорости деформирования порядка
10−6 с−1 и продолжительностью 10 Нс) приводит к значительному остаточно-
му сжатию поверхностного слоя (до 1.5 мм). Вместе с тем отметим, что т.к.
остаточные напряжения взаимно уравновешиваются внутри тела, в том числе в
областях их локализации, то поверхностные сжимающие напряжения уравнове-
шиваются растягивающими в объеме тела, что может ухудшать характеристики
гигацикловой усталости, развивающейся в объеме тела.
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В результате расчета при ультразвуковом симметричном нагружении полу-
чено увеличение пределов усталости при равных долговечностях: для сплава
ВТ3-1, в среднем, до 40% и в гигацикловой области очаг разрушения находится
в объеме тела, для сплава ВТ6 – до 20% и очаг разрушения наблюдается как на
поверхности тела, так и объеме тела.
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Mathematical modeling of scale-structural failure at uniaxial loading of titanium alloys
with cycle asymmetry.

The curves of equal fracture probability high-cycle fatigue on micro-, meso-, and macrodefect levels
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at asymmetric axial loading are proposed. The constitutive relations for the failure probability
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характеристик конструкционных элементов в виде тонких закрепленных по плоским граням
пластин из электропроводящих материалов при индукционном разогреве с учетом факто-
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цесса разогрева. Рассмотрены альтернативные варианты задания тепловых граничных усло-
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пользование получаемых нечетко-множественных величин в качестве аргументов в расчет-
ных выражениях детерминистических версий моделей, расширяемых на данный тип перемен-
ных путем применения модифицированной альфа–уровневой версии эвристического принципа
обобщения. Приведены отдельные результаты численной реализации разработанной методи-
ки.
Ключевые слова: тонкие упругие пластины, электропроводящие материалы, жестко за-
крепленные грани, индукционный разогрев, модели температурного деформирования, разбро-
сы физико-механических параметров, оценки неопределенности результирующих характери-
стик, нечетко-множественная методика, модифицированный эвристический принцип обоб-
щения.

Введение и постановка задачи. Исследования различных вариантов рас-
четных моделей определения прочностных характеристик тонких пластин из
электропроводящих материалов при индукционном разогреве обусловлены весь-
ма широким кругом их востребованности во многих научно-технических отрас-
лях и возрастанием требований к мере адекватности результатов проектных
расчетов, в то время как исходные физико-механические параметры материа-
лов пластин и характеристики производственных процессов их индукционного
нагрева в реальных ситуациях обладают весьма высокой степенью количествен-
ной параметрической неопределенности в виде разбросов количественных дан-
ных экспериментальных измерений, принимаемых технологических допусков в
процессах изготовления пластин и задании параметров внешних воздействий, а
также вариации значений их характеристик, вводимых в расчетные модели на
базе субъективных экспертных оценок [1–4]. Сложность полномасштабного изу-
чения меры влияния разбросов значений исходных параметров при анализе мо-
делей рассматриваемого типа на основе методов вероятностно-стохастического
анализа вызвана отсутствием, в большинстве случаев, реальной информации
корректной статистической природы об указанных показателях неконтрастно-
сти исходных данных в форме однородных частотных выборок большой мощно-
сти и природой других указанных выше факторов неопределенности. При отсут-
ствии отвечающей требованиям статистической корректности исходной инфор-
мации о разбросах исходных параметров данных моделей, расчетный анализ их
параметрической неопределенности может быть реализован путем применения
нечетко-множественных методов [5–8] с менее строгими требованиями к природе
неконтрастной количественной исходной информации. В данном контексте, це-
лью представляемого в настоящей работе исследования является разработка и
апробация нечетко-множественного варианта расчетной методики определения
прочностных характеристик тонких закрепленных по плоским граням пластин
из электропроводящих материалов при индукционном разогреве с учетом пара-
метрической неопределенности в виде разбросов значений экзогенных физико-
механических и геометрических параметров, базирующейся на введении опи-
саний этих параметров нечетко-множественными величинами и использовании
их в качестве аргументов в функциональных расчетных выражениях детерми-
нистических версий моделей, расширяемых на данный тип аргументов путем
применения модифицированной альфа–уровневой версии эвристического прин-
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ципа обобщения.
1. Расчетные соотношения детерминистических вариантов рассмат-

риваемых моделей. Вариантами моделей исследуемого в данной работе ти-
па являются рассмотренные в детерминистической постановке в работе [4] рас-
четные модели обусловленного индукционным разогревом термонапряженного
состояния тонкой изотропной электропроводящей пластины (слоя) с жестко за-
крепленными граничными плоскостями, которые являются теплоизолированны-
ми, либо на которых выполняются идеальные условия теплоотдачи, при задании
в окрестности одной из граней периодической во времени касательной компо-
ненты вектора напряженности осциллирующего внешнего электрического поля.

Рассматриваемая пластина имеет толщину h, занимает в нормированных
пространственных декартовых координатах Ox1x2z область V = {(x1, x2) ∈
R2, 0 ≤ z ≤ 1}; изготовлена из материала с параметром магнитной проницаемо-
сти µ, коэффициентом электропроводности σ, коэффициентом теплопроводно-
сти λ, коэффициентом температуропроводности a, коэффициентом линейного
теплового расширения αT , модулем Юнга E, коэффициентом Пуассона ν. Плос-
кие грани пластины жестко закреплены. Характеристиками внешнего электро-
магнитного воздействия являются амплитуда E0 и частота ω осциллирующего
электрического поля.

При исследовании детерминистического варианта рассматриваемой модели в
случае задания условий свободного теплообмена на гранях для температурного
поля в пластине T (z, τ) получено представление [4]

T (z, τ) = ΦT (z, τ, h, µ, σ, λ, a, αT , E0, ω) = (1)

= T∗δ
2
0(1− z − 2(ch((1− z)δ−1

0 − cos((1− z)δ−1
0 ))e−γ∗−

−2γ∗

∞∑
n=1

(−1)n(n2π2(n2π2 + γ2∗))
−1

(sinn2π2(1− z)− 4n2π2e−γ∗ sinn2π2z)×

× exp(−n2π2τ)),

в котором

T∗ = σ E2
0h

2(2λ)−1, δ0 = δ/h = (2µω σ h2)
−1/2

, γ∗ = 1/δ0, τ = ath−2, (2)

а поля напряжений соответственно описываются соотношениями

σ11(z, τ) = σ22(z, τ) = Φσ(z, τ, h, µ, σ, λ, a, αT , E, ν, E0, ω ) = (3)

= −αTE(1− ν)−1T (z, τ), σzz(z, τ) = σz1(z, τ) = σz2(z, τ) = 0.

Для случая пластины с теплоизолированными гранями эндогенные характери-
стики детерминистического варианта модели [4] имеют представления

T (z, τ) = ΦT (z, τ, h, µ, σ, λ, a, αT , E0, ω) = (4)
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= T∗(δ0(τ + (1/2)(1− z)2 − 1/6) + δ30 − δ20 exp(−z/δ0)+

+2γ∗

∞∑
n=1

(−1)n(n2π2(n2π2 + γ2∗))
−1

cosnπ(1− z) exp(−n2π2τ)),

σ11(z, τ) = σ22(z, τ) = Φσ(z, τ, h, µ, σ, λ, a, ατ , E, ν, E0, ω) = (5)

= −αTE(1− ν)−1T (z, τ), σss(z, τ) = σs1(z, τ) = σs2(z, τ) = 0,

где

T∗ = σ E2
0h

2(2λ)−1, δ0 = δ/h = (2µω σ h2)
−1/2

, γ∗ = 1/δ0, τ = ath−2. (6)

2. Нечетко-множественные обобщения расчетных моделей рассмат-
риваемого типа. Проблема учета параметрической неопределенности в пред-
ставленных моделях термонапряженного состояния тонких пластин при индук-
ционном нагреве, обусловленной разбросами значений неконтрастных исходных
параметров, решается на основе применения методов нечетко-множественного
количественного анализа [5, 6] путем перехода к нечетко-множественным ар-
гументам в распространяемых на этот тип переменных функциональных рас-
четных соотношениях (1)–(6) детерминистических версий данных моделей. В
рамках предположения об учете неконтрастности для всех исходных физико-
механических и геометрических параметров модели h, µ, σ, λ, a, αT , E, ν, E0,
ω вводятся их описания нечетко-множественными величинами h̃, µ̃, σ̃, λ̃, ã, α̃T ,
Ẽ, ν̃, Ẽ0, ω̃ нескольких возможных типов в зависимости от имеющихся масси-
вов экспериментальных и экспертных данных. Рассматриваемыми вариантами
нечетко-множественного описания параметров с разбросами значений является
их описание нормальными треугольными нечеткими числами с представлени-
ями в виде разложений по множествам α – срезов [5, 6], записываемых с ис-
пользованием соответствующих реперных значений из кортежей h̃ = (h1, h2, h3),
µ̃ = (µ1, µ2, µ3), . . . , ω̃ = (ω1, ω2, ω3):

h̃ =
⋃

α∈[0,1]

[hα, hα], hα = (1− α)h1 + αh2, hα = αh2 + (1− α)h3; (7)

µ̃ =
⋃

α∈[0,1]

[µ
α
, µα], µ

α
= (1− α)µ1 + αµ2, µα = αµ2 + (1− α)µ3; . . . ;

ω̃ =
⋃

α∈[0,1]

[ωα, ωα], ωα = (1− α)ω1 + αω2, ωα = αω2 + (1− α)ω3;

описание неконтрастных параметров нормальными трапецеидальными нечет-
кими интервалами с кортежами реперных значений h̃ = (h1, h2, h3, h4), µ̃ =
= (µ1, µ2, µ3, µ4), . . . , ω̃ = (ω1, ω2, ω3, ω4) и разложениями по множествам α –
срезов с граничными значениями:

hα = (1− α)h1 + αh2, hα = αh3 + (1− α)h4; (8)
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µ
α
= (1− α)µ1 + αµ2, µα = αµ3 + (1− α)µ4; . . . ;

ωα = (1− α)ω1 + αω2, ωα = αω3 + (1− α)ω4;

описание неконтрастных параметров нормальными квазигауссовыми нечеткими
числами [5, 6], величины границ интервалов α – уровней которых имеют вид:

hα = m∗h − σ∗lh(lnα
−2)

1/2
, hα = m∗h + σ∗rh(lnα

−2)
1/2

; (9)

µ
α
= m∗µ − σ∗lµ(lnα

−2)
1/2
, µα = m∗µ + σ∗rµ(lnα

−2)
1/2

; . . . ;

ωα = m∗ω − σ∗lω(lnα
−2)

1/2
, ωα = m∗ω + σ∗rω(lnα

−2)
1/2
.

Эндогенные нечетко-множественные параметрические зависимости T̃ (z, τ),
σ̃11(z, τ), σ̃22(z, τ) для рассматриваемых моделей в рамках применения модифи-
цированной формы эвристического принципа расширения также определяются
в форме разложений по α – срезам

T̃ (z, τ) =
⋃

α∈[0,1]

[Tα(z, τ), Tα(z, τ)], (10)

σ̃11(z, τ) =
⋃

α∈[0,1]

[σ11α(z, τ), σ11α(z, τ)], σ̃22(z, τ) =
⋃

α∈[0,1]

[σ22α(z, τ), σ22α(z, τ)].

В процессе получения представлений для границ интервалов α – срезов в пред-
ставлениях (10) осуществляется анализ свойств знакоопределенности частных
производных от функциональных зависимостей

T (z, τ) = ΦT (z, τ, h, µ, σ, λ, a, E0, ω),

σ11(z, τ) = σ22(z, τ) = Φσ(z, τ, h, µ, σ, λ, a, αT , E, ν, E0, ω )

для обеих рассматриваемых моделей по их аргументам в полных областях опре-
деления, в результате которого записываются оценки

∂ΦT /∂E0 ≥ 0, ∂ΦT /∂λ ≤ 0, (11)

С учетом оценок (11) расчетные соотношения для величин границ интервалов α
– срезов в представлениях эндогенных параметров для обеих рассматриваемых
моделей могут быть записаны в виде:

∂Φσ/∂E0 ≥ 0, ∂Φσ/∂λ ≤ 0, ∂Φσ/∂αT ≤ 0, ∂Φσ/∂E ≤ 0, ∂Φσ/∂ν ≤ 0.

Tα(z, τ) = inf
ω∈[ωα, ωα]

a∈[aα, aα]
σ∈[σα, σα]

µ∈[µ
α
, µα]

h∈[hα, hα]

ΦT (z, τ, h, µ, σ, λα, a, αTα, E0α, ω ), (12)
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Tα(z, τ) = sup
ω∈[ωα, ωα]

a∈[aα, aα]
σ∈[σα, σα]

µ∈[µ
α
, µα]

h∈[hα, hα]

ΦT (z, τ, h, µ, σ, λα, a, αTα, E0α, ω );

σαjj(z, τ) = inf
ω∈[ωα, ωα]

a∈[aα, aα]
σ∈[σα, σα]

µ∈[µ
α
, µα]

h∈[hα, hα]

Φσ(z, τ, h, µ, σ, λα, a, αTα, Eα, να, E0α, ω ), (13)

σαjj(z, τ) = sup
ω∈[ωα, ωα]

a∈[aα, aα]
σ∈[σα, σα]

µ∈[µ
α
, µα]

h∈[hα, hα]

Φσ(z, τ, h, µ, σ, λα, a, αTα, Eα, να, E0α, ω ).

Соотношения (12),(13) позволяют дать описания функций принадлежности
для нечетко-множественных эндогенных характеристик рассматриваемых мо-
делей, и в терминах получения оценок возможностей достижения этими харак-
теристиками определенных значений из интервалов носителей дать описания
меры неопределенности для эндогенных параметров моделей при задаваемых
возможных разбросах в значениях исходных параметров.

3. Пример вычислительных экспериментов. На базе разработанной
методики и реализующего ее программного приложения осуществлен расчет-
ный анализ параметрически неопределенной модели описания термонапряжен-
ного состояния при индукционном разогреве для частного случая жестко за-
крепленной и теплоизолированной по граням пластины из хромоникелевой ста-
ли 49НХ со следующими значениями неконтрастных характеристик, задавае-
мых нечетко-интервальными представлениями параметров модуля Юнга Ẽ =
(1.38E∗, 1.40E∗, 1.42E∗, 1.44E∗), коэффициента линейного теплового расшире-
ния α̃T = (8.5α∗, 8.8α∗, 9.0α∗, 9.5α∗), толщины h̃ = (3.87l∗, 3.95l∗, 3.98l∗, 4.04l∗),
где E∗ = 1011 Па, α∗ = 10−6 К−1, l∗ = 10−2 м, а также с параметрами, опи-
сываемыми треугольными нечеткими числами, – магнитной проницаемостью
µ̃ = (3.2µ∗, 3.8µ∗, 4.7µ∗), коэффициентом электропроводности σ̃ = (6.25σ∗, 6.9σ∗,
7.6σ∗), коэффициентом теплопроводности λ̃ = (1.2λ∗, 1.4λ∗, 1.5λ∗), коэффици-
ентом температуропроводности ã = (3.42a∗, 3.68a∗, 4.26a∗), коэффициентом Пуас-
сона ν̃ = (0.28, 0.3∗, 0.31), где µ∗ = 104 Гн · м−1, σ∗ = 106 См · м−1, λ∗ = 1Вт ·
м−1 · град−1, a∗ = 10−7 м2 · с−1. Характеристиками внешнего электромагнитного
воздействия являются неконтрастные параметры амплитуды напаряженности
и циклической частоты осциллирующего внешнего электрического поля, также
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описываемые треугольными нечеткими числами Ẽ0 = (0.85E0∗, 0.9E0∗, 0.95E0∗),
ω̃ = (290f∗, 295f∗, 300f∗), где E0∗ = 10−1 в · м−1, f∗ = 107 с−1. Результаты рас-
чета нечетких эндогенных параметров температуры и темомеханических напря-
жений в рассматриваемой модели в виде профилей соответствующих функций
принадлежности при значении нормированной поперечной координаты z = 0.5
и для момента времени t = 120 c приведены на рисунках 1 и 2.

Можно отметить, что предельные разбросы для эндогенных характеристик
модели на интервалах носителей относительно модальных значений при учете
совокупного влияния неконтрастности всех исходных физико-механических па-
раметров разогреваемой пластины и параметров внешнего воздействия в данном
случае имеют величину 35.6 % для параметра температуры разогрева и 12.4 %
– для термических напряжений.

Рис. 1. Профиль функции принадлежности µT̃ (T ) при z = 0.5, t = 120 c

Рис. 2. Профиль функции принадлежности µσ̃jj (σjj) при z = 0.5, t = 120 c

Выводы. В результате проведенных исследований разработана нечетко-мно-
жественная методика учета разбросов значений исходных геометрических и фи-
зико-механических параметров в расчетных соотношениях модели определения
термомеханических полей при индукционном разогреве тонких пластин из элек-
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тропроводящих материалов с жестко закрепленными теплоизолированными плос-
кими гранями, либо с жестко закрепленными плоскими гранями, на которых
выполняются условия свободного теплообмена, при учете разбросов значений
всей совокупности исходных физико-механических и геометрических характе-
ристик пластин и технологических параметров процесса разогрева. В рамках
разработанной методики предполагается введение нечетко-множественных опи-
саний для неконтрастных экзогенных характеристик рассматриваемых моделей
на базе фаззификации имеющихся данных о разбросах их значений, и исполь-
зование получаемых нечетко-множественных величин в качестве аргументов в
функциональных расчетных соотношениях детерминистических версий моде-
лей, расширяемых на данный тип аргументов путем применения модифициро-
ванной альфа–уровневой версии эвристического принципа обобщения. Приведе-
ны отдельные результаты численной реализации разработанной методики.
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Fuzzy-set computational analysis of parametrically uncertain models of thermoelastic
deformation of electrically conductive plates fixed along the edges under inductive
heating.

A fuzzy-set version of a calculation method for determining the strength characteristics of structural
elements in the form of thin plates made of electrically conductive materials fixed along their flat
edges during induction heating is presented. This method takes into account the uncertainty factors
of the model under consideration, such as the spread of values of the initial physical, mechanical,
and geometric characteristics of the plates and the process parameters of the heating process.
Alternative options for specifying thermal boundary conditions on the flat edges of the plates are
considered. The developed method involves introducing fuzzy-set descriptions for non-contrasting
exogenous characteristics of the models under consideration based on fuzzification of available
data on the spread of their values, and using the resulting fuzzy-set quantities as arguments in
calculation expressions of deterministic versions of models, extended to this type of variable by
applying a modified alpha-level version of the heuristic generalization principle. Selected results of
the numerical implementation of the developed method are presented.

Keywords: thin elastic plates, electrically conductive materials, rigidly fixed edges, induction
heating, temperature deformation models, spread of physical and mechanical parameters, uncertainty
assessment of resulting characteristics, fuzzy-set method, modified heuristic generalization principle.
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МЕТОДИКА ПРОГНОЗА ПАРАМЕТРОВ АКТИВИЗАЦИИ
ЗАТОПЛЕНИЯ ГОРНЫХ ВЫРАБОТОК С УЧЕТОМ
ГЕОТЕХНИЧЕСКИХ И ГОРНО-ГЕОЛОГИЧЕСКИХ ФАКТОРОВ

В статье описан новый подход к прогнозу параметров активизации процесса сдвижения, за-
ключающийся в погоризонтном формировании контуров затопления на основании морфоло-
гических особенностей пласта. Данный подход позволяет повысить достоверность прогноза
активизации геомеханических процессов при затоплении горных выработок и физически обос-
новать нелинейный характер проявления процессов сдвижения во времени.
Ключевые слова: активизация процесса сдвижения, земная поверхность, оконтуривания
выработок, объем выработанного пространства, скорость затопления, горизонт, геомехани-
ческие процессы.

Введение. В связи с массовым закрытием и затоплением угольных шахт
гидрогеомеханическая обстановка в угледобывающих регионах претерпевает по-
стоянные изменения. Затопление горных выработок при ликвидации угольных
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шахт, согласно [1–2], должны сопровождаться техническими мероприятиями,
обеспечивающими безопасность горных работ, охрану природных и инженерных
объектов. Указанные мероприятия подразумевают управление геомеханически-
ми и гидрогеологическими процессами. Примеры таких мероприятий описаны
в работе [3]. При частичном или полном затоплении происходит активное раз-
витие гидрогеомехнических процессов, прогноз которых необходим для обосно-
вания инженерных решений.

Для обеспечения безопасности объектов поверхности при затоплении горных
выработок одним из основных требований ряда нормативных документов [4–7]
является адекватный прогноз параметров сдвижений земной поверхности, вы-
званных активизацией геомеханических процессов при затоплении горных вы-
работок.

Практика расчетов прогнозируемых сдвижений земной поверхности при за-
топлении горных выработок различных шахт, согласно методике [5], показывает,
что существующая методика далеко не всегда позволяет определять с необходи-
мой достоверностью как величины деформаций земной поверхности, так и вре-
мя их проявления. Анализ приведенных литературных источников позволяет
сделать вывод, что основной причиной погрешностей при расчетах деформаций
земной поверхности, вызванных затоплением горных выработок, является под-
ход к прогнозу деформаций от затопления горных выработок, основанный на
методах, разработанных для прогноза сдвижений в процессе подземной добычи
угля. Целью данной работы является формирование нового подхода к прогнозу
сдвижений земной поверхности, вызванных затоплением горных выработок, ос-
нованного на геотехнических особенностях процесса затопления угольных шахт.

1. Метод определения параметров активизации затопления. При со-
вершенствовании методики расчета следует учитывать, что при проведении лю-
бой подземной выработки вокруг нее формируется зона нарушенного массива
(зона повышенных напряжений, зона обрушения).

На глубине H горная порода испытывает давление (вертикальное напряже-
ние в массиве), приблизительно равное:

σ = γ ·H, (1)

где γ — средний удельный вес горных пород, т/м3.
Когда ведется очистная выемка, давление, которое ранее держал вынутый

уголь, перераспределяется на окружающий массив и, в частности, на оставлен-
ные целики. Часть нагрузки воспринимается выработанным пространством и
породами кровли. Взаимное наложение зон влияния, когда две выработки рас-
положены близко друг к другу, приводит к тому, что эти зоны начинают объ-
единяться.

Если целик между выработками очень узкий (lмц < 0, 1H, lмц – длина меж-
лавного целика, м; H – глубина, м.), то напряжения в целике многократно воз-
растают (происходит их концентрация), целик теряет свою несущую способность
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и разрушается. Кровля над обеими выработками целиком деформируется как
единый объект.

Данные процессы нашли своё отражение в критериях совместного оконту-
ривания выработок при добыче угля подземным способом, приведенных в нор-
мативных документах [6–7]. Однако учет данных критериев требует отдельного
разъяснения в условиях затопления очистных горных работ. В существующих
методах прогноза сдвижений земной поверхности при затоплении выработок [5,
8], вопрос правильного обобщения зон оконтуривания не освещен. Данное упу-
щение в определенных геотехнических условиях (например при диагональном
расположении лав) часто приводит к неправильному формированию контуров
сдвижения и игнорированию морфологического фактора, который при затопле-
нии может оказывать существенное влияние на параметры локализации дефор-
маций горного массива.

Для определения характера влияния морфологических особенностей пла-
ста на параметры сдвижения было проведено сравнение ориентирования мульд
сдвижения при оконтуривании очистных выработок по штрекам и при созда-
нии контуров выработок по изолиниям. Оконтуривание выработок по изоли-
ниям пласта можно считать правомерным, основываясь на приведенном выше
условии разрушения угольных целиков и считая, что в подобных условиях все
очистные выработки объединяются в единое выработанное пространство.

Как видно из представленных на рисунке 1 результатов расчетов, при окон-
туривании выработанного пространства общепринятой методикой «по штрекам»
наблюдается картина распределения сдвижений, не учитывающая порядок за-
топления, который, согласно базовым физическим законам, должен происходить
по изолиниям пласта. В ряде горнотехнических условий применение традици-
онных подходов будет приводить к неправильному определению участков лока-
лизации максимальных деформаций.

Стоит отметить, что при определении продолжительности процесса сдвиже-
ния характер оконтуривания выработанного пространства также имеет ключе-
вое значение.

Анализ результатов пространственного моделирования затопления горных
выработок по горизонтам с шагом подъема шахтных вод 10 метров позволяет
констатировать наличие прямой зависимости скорости затопления угледобыва-
ющего предприятия от объема выработанного пространства [9]. Приведенные
закономерности подтверждаются исследованиями взаимосвязи среднесуточного
подъема воды с техногенной пустотностью на примере шахты Моспинская.

Анализ приведенной работы позволяет сделать вывод, что на большинстве
временных периодов визуально наблюдается корреляция между объемом затап-
ливаемых горных выработок на горизонте и скоростью затопления этого гори-
зонта – при возрастании объемов горных выработок скорость затопления го-
ризонтов уменьшается, и наоборот. В то же время, на определенных участках
затопления такая зависимость наблюдается менее выражено, что может сви-
детельствовать о значимом влиянии на скорость затопления в эти временные
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А)

Б)

Рис. 1. Мульды сдвижений при задании контуров различными методами (А – по штрекам,
Б – по изолиниям)

периоды других факторов. В этой связи, с целью совершенствования методики
прогноза изменения уровня затопления необходима разработка методов установ-
ления зависимости скорости затопления от влияющих факторов на основании
статистических данных для конкретной шахты.

Стоит отметить, что активизация процесса сдвижения от затопления, как
и при подработке земной поверхности, происходит не мгновенно. Учитывая ги-
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Рис. 2. Изменение объема выработанного пространства и скорости затопления горизонтов

потезу об идентичности базовых параметров процессов сдвижения при добыче
угля и при затоплении горных работ, следует считать, что начало активизации
геомеханических процессов от затопления горных выработок, имеет определен-
ные условия формирования объема затопления, который может определяться
согласно приведенной формуле

C = A0 ·Hср, (2)

где A0 – коэффициент, определяемый по таблице 5.4 работы [6] в зависимости
от угла δ.

Стоит отметить, что применение описанной в [5] методики определения про-
должительности процесса сдвижения позволяет получать значения, не превы-
шающие 12 месяцев. Однако, согласно результатам анализа ряда натурных ис-
следований, проведенных на горных отводах шахт «Заперевальная», «Замков-
ская», им. В.И. Ильича, «Брянковская», им. Чеснокова и др., срок проявления
деформаций может превышать несколько лет. Решение описанной проблемы воз-
можно при прогнозе продолжительности процесса сдвижения вызванного затоп-
лением горных выработок с применением формулы:

T = 1, 1 · H
C

·
(

cos γ0
sin (γ0 − α)

+
cos (ψ2 − α)

sinψ2

)
, (3)

где H – глубина залегания пласта под рассматриваемой точкой, м; C – скорость
поднятия воды, м/с; α – угол падения пласта; γ0 – граничный угол, определяе-
мый по рекомендациям разд. 7 работы [7]; ψ2 – угол полных сдвижений, также
определяемый по рекомендациям разд. 7 работы [7].
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Данный подход основан на формуле (3), приведенной в [7] для выработок,
отрабатываемых по восстанию, и может применяться в рамках предположения о
том, что подъем воды провоцирует геомеханические процессы, сходные по своей
природе с движением забоя по восстанию.

Как показывает практика, при реализации такого подхода продолжитель-
ность процесса сдвижения при глубине 500 метров может превышать в некото-
рых условиях 40 месяцев (рис. 3).

Рис. 3. Влияние скорости подъема воды на продолжительность процесса сдвижения

Комплексирование формулы (3) и зависимостей, приведенных на рисунке
3, позволяет установить взаимосвязь продолжительности процесса сдвижения
с объемами выработанного пространства, графическое представление которой
приведено на рисунке 4.

Рис. 4. Связь продолжительности процесса сдвижения с объемами выработанного простран-
ства
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2. Анализ результатов. Учет морфологии пласта при оконтуривании за-
тапливаемых горизонтов позволяет установить взаимосвязь величины оседаний,
максимальной продолжительности процесса сдвижения и уточнить скорость за-
топления горных работ.

По результатам расчетов для выработок шахты Моспинская наибольшая
продолжительность процесса сдвижения реализовывалась на участке глубиной
320–310 метров и достигала более 49 месяцев. Минимальная продолжительность
процесса сдвижения составляла 5,6 месяцев и прогнозировалась при затоплении
выработок на глубинах 200–210 метров. Результаты расчетов показывают, что
продолжительность процесса сдвижения может превышать 4 года с момента
затопления горных выработок, однако проявляется в пределах горного отво-
да нелинейно, с формированием участков ускоренного протекания геомеханиче-
ских процессов.

Решение задачи по совершенствованию методики прогноза деформаций зем-
ной поверхности в результате затопления горных выработок подразумевает уста-
новление зависимости скорости затопления от объема выработанного простран-
ства, а последовательность её решения можно описать следующим образом:
определяется объем выработанного пространства каждой лавы в пределах j-го
уровня Vij ; по формуле 2 определяется минимальная «высота» оконтуриваемого
горизонта; для каждого горизонта определяется суммарный объем выработан-
ного пространства; с использованием подхода, описанного в [9–11], определя-
ются начальная (Tjнач) и конечная (Tjкон) дата затопления j-го горизонта, что
позволяет определить среднесуточный подъем воды для формулы (3).

Выводы. В результате проведенного исследования разработана новая ме-
тодика прогноза активизации деформаций земной поверхности, учитывающая
базовые геотехнические параметры отработки и позволяющая прогнозировать
продолжительность процесса сдвижения с учетом фактических наблюдений за
среднесуточным подъемом воды. Явная взаимосвязь продолжительности про-
цесса сдвижения с фактическими параметрами техногенной пустотности позво-
ляет утверждать об обоснованности представленных выводов. Дополнительная
калибровка данного подхода возможна при наличии длительного площадного
мониторинга за сдвижением земной поверхности при затоплении горных вы-
работок ликвидируемых шахт от момента прекращения работы водоотливного
комплекса до достижения водой проектной отметки.
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МЕТОДОЛОГИЯ ОПРЕДЕЛЕНИЯ ДОСТОВЕРНОСТИ
НАПРЯЖЕНИЙ НА КОНТУРЕ ГОРНОЙ ВЫРАБОТКИ
МЕТОДОМ ЩЕЛЕВОЙ РАЗГРУЗКИ

Изложена методология определения достоверного напряжения на контуре подземной горной
выработки методом щелевой разгрузки. Величина напряжений, вычисленная по многофактор-
ной функциональной зависимости, корректируется с учетом вероятностных характеристик
учитываемых аргументов и доверительной вероятности, задаваемой пользователем. Суще-
ственными факторами, влияющими на результат измерений, являются ошибки определения
смещений между реперами после образования щели, протяженности разгрузочной щели и
модуля упругости горных пород. Ошибки определения расстояния между реперами до об-
разования щели и коэффициента Пуассона практически не оказывает влияние на величину
среднеквадратических отклонений.
Ключевые слова: напряжения, горная выработка, физико-механические свойства, щелевая
разгрузка, числовые характеристики, достоверность.

Введение. Для изучения деформационных процессов в массиве горных по-
род в настоящее время используются различные методы: деформационные,
структурные и геофизические. Деформационные методы измерений основаны
на частичной или полной разгрузке массива горных пород в зоне техногенных
пространств различного типа: щели, скважины, шпуры, подготовительные вы-
работки. Структурные и геофизические методы позволяют выявить только ка-
чественную картину напряженного состояния горного массива [1, 2].

Достаточно широко используемым является метод щелевой разгрузки гор-
ного массива, основанный на измерении деформаций, обусловленных наличием
выбуренной в стенке выработки щели в виде полудиска; при этом полностью
исключаются действия остаточных напряжений, разноупругость пород на от-
дельных участках и, частично, влияние структуры трещиноватости. Примене-
ние описанного метода позволяет получить информацию о напряжениях в мас-
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сиве при относительно низкой трудоёмкости и достаточно высокой точности в
различных горно-геологических условиях. Метод эффективен при исследова-
нии поля напряжений в структурных блоках, зонах контактов пород и тектони-
ческих трещин, определении гравитационно-тектонических напряжений в зоне
горных выработок и оценки напряженного состояния в окружающем простран-
стве [2].

1. Методика анализа многофакторной зависимости для напряже-
ния на контуре выработки. Метод щелевой разгрузки горного массива ре-
ализуется в следующей последовательности: на контуре выработки устанавли-
ваются репера, создается на поверхности обнажения разгрузочная щель в фор-
ме полудиска определенного радиуса и длины. По показаниям деформометра и
параметрам разгрузочной щели определяются напряжения на контуре горной
выработки в направлениях, соответственно перпендикулярных и параллельных
оси щели [3, 4].

Напряжение на контуре выработки (МПа), действующее перпендикулярно к
плоскости щели, определяют по формуле [5–7]:

σ⊥ =
U · E

2, 12 · L− l ·
(
1−K⊥(⊥) + µ0K∥(⊥)

) , (1)

где U – деформация пород после образования разгрузочной щели, м; E – модуль
упругости горных пород, МПа; µ – коэффициент Пуассона; L – длина щели, м;
l – расстояние между реперами, м; K⊥(⊥)cp, K∥(∥)cp – коэффициенты концентра-
ции напряжений σ⊥(⊥) и σ∥(∥) в направлениях соответственно перпендикулярно
и параллельно щели [2, рис. 1.10].

Формула (1) является многофакторной статистической зависимостью. По-
этому при определении физико-механических свойств горных пород и углуб-
ленном изучении процессов (явлений), происходящих в горном массиве, требу-
ется не только выявление основных закономерностей, но и анализ возможных
отклонений. Характерной особенностью современного этапа развития естествен-
ных и технических наук является достаточно широкое и плодотворное примене-
ние вероятностных или статистических методов. Эти методы не противоречат
классическим методам точных наук. Они обеспечивают более глубокий анализ
результатов с учетом присущих ему элементов случайности. Методы теории ве-
роятностей правомерны только для исследования массовых случайных явлений.
Однако они позволяют предсказать средний суммарный результат исходя из со-
вокупности аналогичных измерений (опытов), конкретные данные каждого из
которых являются случайными. На основе косвенных способов исследований
правомерно использование экспериментальных данных, от качества и количе-
ства которых зависит надежность и объективная ценность практических расче-
тов, выполненных на основе многофакторных зависимостей, широко применя-
емых при недропользовании. При определении конкретных значений показате-
лей и горнотехнических параметров необходимо учитывать вероятностный ха-
рактер изменения аргументов, используемых в многофакторной статистической
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зависимости. Установить закон распределения этих аргументов, как правило,
не представляется возможным из-за ограниченного числа экспериментальных
данных. В этом случае, исходя из теории вероятностей, вместо законов рас-
пределения применяют неполное, приближенное описание системы случайных
величин с использованием минимального количества числовых характеристик.
В качестве числовых характеристик случайных величин привлекаются матема-
тическое ожидание, мода, медиана, начальные и центральные моменты в виде
дисперсии и среднеквадратического отклонения. Объективность полученных ре-
зультатов при решении подобных задач базируется на использовании аппарата
теории вероятностей в виде числовых характеристик, основными из которых
являются математическое ожидание, дисперсия и среднеквадратическое откло-
нение [12–14].

Задача определения погрешности рассчитываемых параметров (показате-
лей) по многофакторным зависимостям достаточно успешно решается методом
линеаризации функций путем разложения функции в ряд Тейлора около точ-
ки, сохранением членов первого порядка и отбрасыванием всех членов высших
порядков [12, 13].

Использование вероятностно-статистических характеристик аргументов, вхо-
дящих в многофакторную нелинейную зависимость, позволяет по величине сла-
гаемых дисперсии, сделать заключение о влиянии ошибок определения конкрет-
ного учитываемого аргумента на результат расчета. С учетом влияния величи-
ны ошибок каждого аргумента представляется возможность совершенствовать
приемы увеличения точности экспериментальных данных [15, 16].

Интегральной оценкой вероятностно-статистического напряжения на конту-
ре горной выработки служит доверительный интервал:

σср − t · σm < σk⊥pt < σср + t · σm, (2)

где t – число стандартных отклонений (число сигм); t = 1, 2, 3; σср – напряжение,
вычисленное при средних значениях аргументов; σm – стандартное отклонение
напряжения; pt – вероятность оценки параметра, pt = 0, 68 при t = 1; pt = 0, 95
при t = 2; pt = 0, 99 при t = 3.

Для вычисления дисперсии (среднеквадратического отклонения) величины
напряжений, рассчитываемой по многофакторной статистической нелинейной
зависимости, включающей независимые случайные величины учитываемых ар-
гументов, меняющихся в небольшом интервале, и отсутствии между ними кор-
реляционной связи (rij = 0 при i ̸= j) целесообразно использование вышеизло-
женного подхода, изложенного в работах [12, 13, 14].

Математическое выражение вероятностно-статистической зависимости для
использования в расчетах технологических параметров конструктивных элемен-
тов системы разработки, отражающее одновременное изменение учитываемых
аргументов вычисляется как сумма частных производных по каждой перемен-
ной, умноженной на соответствующие ошибки определения этих аргументов:
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Dm⊥ = σ2m⊥
=

=

(
E

2, 12 · L− l · (1−K⊥(⊥) + µ0K∥(⊥))

)2

× (σU )
2+

+

(
U

2, 12 · L− l · (1−K⊥(⊥) + µ0K∥(⊥))

)2

× (σE)
2+

+

(
2, 12 · U · E[

2, 12 · L− l · (1−K⊥(⊥) + µ0K∥(⊥))
]2
)2

× (σL)
2+

+

(
2, 12 · U · E ·

(
1−K⊥(⊥)cp + µ0K∥(∥)cp − 1

)[
2, 12 · L− l · (1−K⊥(⊥) + µ0K∥(⊥))

]2
)2

× (σl)
2+

+

(
U · E · l ·K∥(∥)cp[

2, 12 · L− l · (1−K⊥(⊥) + µ0K∥(⊥))
]2
)2

× (σµ0)
2,

(3)

где σUAB
, σE , σL, σl, σµ – среднеквадратическое отклонение соответственно де-

формации массива между реперами, модуля упругости, протяженности (длины)
щели, деформации массива горных пород после образования щели и коэффици-
ента Пуассона.

2. Численная реализация методики. Оценки вероятностно-статистичес-
ких величин напряжений на контурах горных выработок проведены для условий
характерного месторождения Урала. Месторождение представлено породами,
физико-механические и прочностные свойства которых приведены в таблице 1.

Таблица 1.
Физико-механические и прочностные свойства основных пород и руд

Породы и Коэф- Удельный Коэффи- Прочностные и упругие
руды фициент вес пород, циент свойства пород в куске

крепости МН/м3 Пуассона Предел прочности Модуль
µ на одноосное сжатие, упругости,

МПа МПа×10−5

порфириты 10–12 0,027 0,27 98 1,12
диориты 10–11 0,026 0,23 87 1,05
скарны 5–6 0,027 0,26 50 0,92

известняки 7–8 0,026 0,25 65 0,95
магнетиты 9–10 0,038 0,32 86 1,1

В качестве исходных данных использованы результаты опытно-промышленных
измерений напряжений методом щелевой разгрузки на базе 70 мм (табл. 2) [3–5].
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Значения дисперсий напряжения на контуре горной выработки в зависимо-
сти от ошибок определения аргументов, учитываемых в формуле (1), рассчита-
ны при среднеквадратических ошибках определения: модуля упругости горных
пород σE = 0, 2∗E, σE = 0, 3∗E, σE = 0, 4∗E и коэффициента Пуассона равного
σµ = 0, 05µ (табл. 3). Из таблицы видно, что при уменьшении модуля упругости с
130 МПа до 35 МПа дисперсия напряжений на контуре выработки сокращается.
При ошибках определения модуля упругости σE = 0, 2∗E дисперсия уменьша-
ется с 9, 7E + 14 до 7E + 13, при σE = 0, 3∗E с 1, 1E + 15 до 8, 3E + 13 и при
σE = 0, 4∗E с 1, 4E + 15 до 1E + 14. В общем случае дисперсия напряжений
снижается.

Таблица 2.
Результаты замера параметров при методе щелевой разгрузки

Наименование U , м L, м l, м K⊥(⊥) K∥(∥)

горизонт 1
1 гор 0,00022 0,32 0,104 -0,03 -0,33
3 верт 0,00029 0,32 0,098 -0,03 -0,33
4 верт 0,00024 0,32 0,107 -0,03 -0,33
5 верт 0,00037 0,32 0,108 -0,03 -0,33
6 верт 0,00019 0,33 0,107 -0,03 -0,33
7 верт 0,00029 0,32 0,112 -0,03 -0,33

горизонт 2
1 верт 0,00022 0,34 0,18 -0,03 -0,33
2 гор 0,00011 0,345 0,116 -0,03 -0,33
3 верт 0,00015 0,33 0,15 -0,03 -0,33

горизонт 3
1 верт 0,00027 0,32 0,108 -0,03 -0,33
2 гор 0,00016 0,32 0,103 -0,03 -0,33
3 верт 0,00017 0,34 0,121 -0,03 -0,33
среднее 0,0002315 0,301792 0,116923
D 5,3515E-09 0,007503 0,000485
σ 7,3154E-05 0,08662 0,02203

Среднеквадратические отклонения напряжений на контуре горной выработ-
ки при вышеуказанных ошибках определения модуля упругости и при ошибке
коэффициента Пуассона, равной σµ = 0, 05µ, представлены в таблице 4 и на
рисунке 1.

Установлено, что при снижении точности определения модуля упругости с
σE = 0, 2 · E до σE = 0, 4 · E наблюдается увеличение среднеквадратической
ошибки.

Анализ результатов расчета компонентов, составляющих дисперсию (3), поз-
воляет определить влияние ошибок определения учитываемых аргументов (1)
на общую дисперсию (табл. 5).
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Рис. 1. Зависимость среднеквадратических отклонений напряжений на контуре горной выра-
ботки от модуля упругости

Сравнение слагаемых, образующих общую дисперсию, указывает, что наи-
большие из них 3, 59E+14, 3, 24E+14 и 4, 58E+14 при E = 130 МПа и 2, 60E+13,
2, 35E+13 и 39,9 при E = 35 МПа обусловлены результатами экспериментальных
работ. Доля ошибок определения аргументов в общей дисперсии не превыша-
ет 0,006%. Для более детального анализа влияния ошибок определения модуля
упругости горных пород на среднеквадратические отклонения напряжения на
контуре выработки проведены расчеты при различных их значениях (табл. 6).

Проведенные расчеты показывают, что при применении метода щелевой раз-
грузки для обеспечения безопасных условий при подземной разработке место-
рождений необходимо учитывать вероятностные характеристики аргументов,
входящие в многофакторные статистические зависимости, используемые для
определения напряженного состояния горного массива.

Исходя из требований техники безопасности и устойчивого состояния гор-
нотехнических конструкций и сооружений, отрицательные напряжения сжатия
необходимо принимать по верхней границе доверительного интервала, рассчи-
танного по многофакторной статистической функции (1) с учетом вероятност-
ных характеристик учитываемых аргументов и доверительной вероятности pt,
задаваемой числом стандартных отклонений t:

−σk⊥pt = −(σ(⊥) + t · σm). (4)

Выражение (4) позволяет по экспериментальным данным, полученным при
использовании метода щелевой разгрузки, определить с заданной достоверно-
стью напряжения на контуре горных выработок.
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Таблица 4. Результат расчета среднеквадратических отклонений
при различных ошибках определения модуля упругости

E, МПа 35 40 60 70 80 90 100 110 120 130

σ1, МПа 8,38 9,58 14,4 16,8 19,2 21,6 23,9 26,3 28,7 31,1

σ2, МПа 9,13 10,4 15,6 18,3 20,9 23,5 26,1 28,7 31,3 33,9

σ3, МПа 10,1 11,5 17,3 20,2 23 25,9 28,8 31,7 34,5 37,4

Таблица 5. Величина составляющих дисперсию напряжений
Производные по: ∂U ∂E ∂L ∂l ∂µ Dσ⊥

E = 130 МПа

3,59Е+14 3,24Е+14 4,58Е+14 7,59Е+12 2,81Е+09 1,15Е+15

Доля, % 31,3 28,2 39,9 0,01 2,45Е-06 99,41

E = 35 МПа

2,60Е+13 2,35Е+13 3.32Е+13 5,50Е+11 2,04Е+06 8,33Е+13

Доля, % 31,3 28,2 39,9 0,006 2,45Е-06 100

Таблица 6. Значения среднеквадратических отклонений
напряжений на контуре горной выработки, МПа

Ошибки определения коэффициента Пуассона
Модуль упругости, E, МПа

35,0 60,0 80,0 100,0 130,0

σµ = 0, 05µ, µ = 0, 34 9,24 15,80 21,10 26,40 34,30

σµ = 0, 05µ, µ = 0, 28 9,15 15,70 20,90 26,10 34,00

σµ = 0, 05µ, µ = 0, 23 9,13 15,6 20,90 26,10 33,90

Выводы. Возникновение негативных явлений при недропользовании обу-
словлены несоответствием параметров техногенных образований, определенных
с использованием многофакторных статистических зависимостей, реальным ус-
ловиям. Это обусловлено тем, что аргументы, учитываемые в этих зависимо-
стях, характеризуются вероятностным изменением.

Напряжение на контуре горной выработки необходимо определять по верх-
ней границе доверительного интервала, рассчитанного по многофакторной ста-
тистической функции (1) с учетом вероятностных характеристик учитываемых
аргументов и доверительной вероятности pt, задаваемой числом стандартных
отклонений t.

Исследование выполнено в соответствии с государственным заданием №075-
00410-25-00. № гос. рег. 123012300007-7. Тема 3 (2025-2027).
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V.M. Alenichev, R.V. Krinitsyn
Assessment of the accuracy of determining stresses on the contour of a mining working
by the slit loading method.

The article presents a methodology for determining reliable stress on the contour of an underground

156



Методология определения достоверности напряжений на контуре горной выработки

mine workings using the slot unloading method. The stress value calculated using a multifactor
functional dependence is adjusted taking into account the probabilistic characteristics of the considered
arguments and the confidence probability set by the user. The significant factors affecting the
measurement results include errors in determining the deformation between the collets, the length
of the unloading slot, and the elastic modulus of the rock. Errors in determining the distance between
the collet reference points and the Poisson coefficient have almost no effect on the magnitude of the
standard deviations.
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